5106
J. Am. Chem. Soc. 2001, 123, 5106-5107
Metallophilicity: The Dimerization of
Bis[(triphenylphosphine)gold(I)]chloronium Cations
Armin Hamel, Norbert W. Mitzel, and Hubert Schmidbaur*
Anorganisch-chemisches Institut
Technische UniVersita¨t Mu¨nchen,
D-85747 Garching, Germany
ReceiVed February 14, 2001
The current literature reflects a rapidly growing interest in
closed-shell interactions between the metal centers of complexes
of the heavy late transition elements.1 The effects of 5d10-5d10
interactions on structure and bonding of such complexes are
particularly obvious for coordination compounds of gold(I)
(“aurophilicity”),2 but similar phenomena have been reported for
several of the neighboring elements of gold in the Periodic Table
(“metallophilicity”).3 It appears that weak attractive forces
between metal atoms or cations with seemingly saturated electron
configurations play an important role in determining the config-
uration, conformation, and oligomerization of complexes.4
In this communication we report the unprecedented dimeriza-
tion of the bis[(triphenylphosphine)gold(I)]chloronium cation in
its hexafluoroantimonate(VI) salt. Salts with this chloronium
cation {[(Ph3P)Au]2Cl}+X- were first observed by Uson et al. in
1979.5 The crystal structure of the perchlorate salt (1, containing
1 mol equiv of CH2Cl2) was determined by Jones et al. in 1980,
and the cation was shown to be monomeric and to have the
expected angular structure6 which is similar to that of the neutral,
isoelectronic sulfide and selenide complexes [(Ph3P)Au]2S/Se.7-9
The angles Au-Cl-Au in 1 were found to be extremely small
[80.7 and 82.7° for two independent cations in the unit cell] and
to be associated with short aurophilic contacts of 3.035 and 3.085
Å, respectively.6 The corresponding bromonium tetrafluoroborate
Figure 1. Molecular structure of a dication in [{[(Ph3P)Au]4Cl2}2+]-
(SbF6-)2, 2, with atomic numbering (ORTEP, 50% probability ellipsoids,
H atoms omitted for clarity). The asymmetric unit contains two
independent dications of S4 symmetry with very similar dimensions, of
which only one is shown. Selected bond lengths [Å] and angles [deg]
(with the second decation in brackets): Au1-Au1A 3.0734(4) [3.0788-
(4)], Au1-P1 2.250(2) [2.252(2)], Au1-Cl1 2.355(2) [2.366(2)], P1-
Au1-Cl1 170.99(8) [171.12(7)], Au1-Cl1-Au1C 101.4(1) [102.0(1)],
Au1A-Au1-Au1B 72.73(1) [73.38(1)].
salt was recently reported from this laboratory10 and showed an
analogous structure, but with an Au-Br-Au angle of 96.83(3)°
and a correspondingly longer Au- -Au contact of 3.6477(1) Å.
This work also included chloronium salts with phosphines other
than Ph3P.9,10 The present work is also important, because it
describes some of the most stable halonium ions reported so far.11
Treatment of (Ph3P)AuCl with only half a mole equivalent of
AgSbF6 in tetrahydrofuran/dichloromethane at -78 °C under
protection against incandescent light leads to the precipitate of
AgCl and a clear colorless solution. Filtration and partial
evaporation of the solvents from the filtrate under vacuum give
colorless crystals in 84% yield, which were identified as
[{[(Ph3P)Au]4Cl2}2+](SbF6-)2 (2):
(1) Pyykko¨, P. Chem. ReV. 1997, 97, 597.
(2) (a) Scherbaum, F.; Grohmann, A.; Huber, B.; Kru¨ger, C.; Schmidbaur,
H. Angew. Chem., Int. Ed. Engl. 1988, 27, 1602. (b) Schmidbaur, H., Ed.
Gold: Progress in Chemistry, Biochemistry and Technology; J. Wiley &
Sons: Chichester, 1999. (c) Schmidbaur, H. Interdiscip. Sci. ReV. 1992, 17,
213. (d) Schmidbaur, H. Gold Bull. 1990, 23, 11. (e) Schmidbaur, H. Gold
Bull. 2000, 33, 3. (f) Schmidbaur, H. Chem. Soc. ReV. (London) 1995, 24,
391.
4[(Ph3P)AuCl] + 2AgSbF6 f
2+
-
(3) (a) Pyykko¨, P.; Li, J.; Runeberg, N. Chem. Phys. Lett. 1994, 218, 133.
(b) Bennett, M. A.; Contel, M.; Hockless, D. C. R.; Welling, L. Chem.
Commun. 1998, 2401. (c) Catalano, V. J.; Bennet, B. L.; Muratidis, S.; Noll,
B. C. J. Am. Chem. Soc. 2001, 123, 173. (d) Cheng, E.; Leung, K. H.;
Miskowski, V. M.; Yam, V.; Phillips, D. L. Inorg. Chem. 2000, 39, 3690. (e)
Munakata, M.; Wu, L. P.; Kurodo-Sowa, T. AdV. Inorg. Chem. 1999, 46,
173. (f) Singh, K.; Long, J. R.; Stavropoulos, P. J. Am. Chem. Soc. 1997,
119, 2943. (g) Schumann, H.; Janiak, C.; Pickardt, J.; Bo¨rner, U. Angew.
Chem., Int. Ed. Engl. 1987, 26, 789. (h) Janiak, C.; Hofmann, R. J. Am. Chem.
Soc. 1990, 112, 5924. (i) Pyykko¨, P.; Schneider, W.; Bauer, A.; Bayler, A.;
Schmidbaur, H. Chem. Commun. 1997, 1111.
(4) (a) Vicente, J.; Chicote, M.-T.; Lagunas, M.-C. Inorg. Chem. 1993,
32, 3748. (b) Davila, R. M.; Staples, R. J.; Elduque, A.; Harlass, M.; Kyle,
L.; Fackler, J. P., Jr. Inorg. Chem. 1994, 33, 5940. (c) Vickery, J. C.; Balch,
A. L. Inorg. Chem. 1997, 36, 5978. (d) Crespo, O.; Fernandez, E. J.; Jones,
P. G.; Laguna, A.; Lopez-de-Luzuriaga, J. M.; Mendia, A.; Olmos, E. Chem.
Commun. 1998, 2233. (e) Wang, S.; Garzon, G.; King, C.; Wang, J. C.;
Fackler, J. P., Jr. Inorg. Chem. 1989, 28, 4616. (f) Rheingold, A. L.; Liable-
Sands, L. M.; Trofimenko, S. Chem. Commun. 1997, 1691.
2AgCl +
[{[(Ph3P)Au]4Cl2} ](SbF6 )2
2
Solutions of compound 2 in trichloromethane-d show only one
31P resonance in the NMR spectrum with a chemical shift (31.62
ppm) similar to that of 1 (31.50 ppm).10 In the 1H and 13C NMR
spectra there is only one set of phenyl resonances indicating
equivalent phenyl groups in solution. In the mass spectrum of
the compound (FD) the cation [(Ph3P)Au]2Cl+ is the parent peak
at m/z 955 (37Cl).12
Crystals of 2 (from dichloromethane/pentane)13 are tetragonal,
space group I4h. Surprisingly, the lattice is composed of tetra-
nuclear dications (Figure 1) and hexafluoroantimonate anions.
There are two different dications each with crystallographically
imposed S4 symmetry and with very similar geometrical details
(caption to Figure 1). Two quarters taken from two different
dications therefore represent the asymmetric unit of the crystal.
The gold atoms are at the corners of a bisphenoid with contacts
Au1-Au1* 3.0734(4) and Au2-Au2* 3.0788(4) Å in the two
(5) Uson, R.; Laguna, A.; Castrillo, M. V. Synth. React. Inorg. Met.-Org.
Chem. 1979, 9, 317.
(6) Jones, P. G.; Sheldrick, G. M.; Uson, R.; Laguna, A. Acta Crystallogr.
1980, B36, 1486.
(7) Schmidbaur, H.; Franke, R.; Eberlein J. Chem.-Ztg. 1975, 99, 91.
(8) (a) Lensch, C.; Jones, P. G.; Sheldrick, G. M. Z. Naturforsch. 1982,
37b, 944. (b) Mu¨ller, A.; Krickemeyer, E.; Sprafke, A.; Schladerbeck, N. H.;
Bo¨gge, H. Chimia 1988, 42, 68. (c) Jones, P. G.; Tho¨ne, C. Chem. Ber. 1991,
124, 2725. (d) Canales, F.; Gimeno, C.; Laguna, A.; Dolores Villacampa, M.
Inorg. Chim. Acta 1996, 244, 95. (e) Chen, B.-L.; Mok, K.-F.; Ng, S.-Ch. J.
Chem. Soc., Dalton Trans. 1998, 4035.
(10) Bayler, A.; Bauer, A.; Schmidbaur, H. Chem. Ber./Recl. 1997, 130,
115.
(11) (a) Olah, G. A. Halonium Ions; Wiley-Interscience: New York, 1975.
(b) Olah, G. A.; Prakash, G. K. S.; Sommer J. Superacids; John Wiley &
Sons: New York, 1985.
(9) Hofreiter, S.; Paul, M.; Schmidbaur, H. Chem. Ber. 1995, 128, 901.
10.1021/ja010398e CCC: $20.00 © 2001 American Chemical Society
Published on Web 05/03/2001