Biochemistry
Article
(16) Siddiqui, K. S., and Cavicchioli, R. (2006) Cold-adapted
enzymes. Annu. Rev. Biochem. 75, 403−433.
(35) Leung, D. W., Chen, E., and Goeddel, D. V. (1989) A method
for random mutagenesis of a defined DNA segment using a modified
polymerase chain reaction. Technique 1, 11−15.
(17) van den Burg, B. (2003) Extremophiles as a source for novel
enzymes. Curr. Opin. Microbiol. 6, 213−218.
(36) Horton, R. M., Ho, S. N., Pullen, J. K., Hunt, H. D., Cai, Z., and
Pease, L. R. (1993) Gene splicing by overlap extension. Methods
Enzymol. 217, 270−279.
(18) Haki, G. D., and Rakshit, S. K. (2003) Developments in
industrially important thermostable enzymes: A review. Bioresour.
Technol. 89, 17−34.
(19) Vieille, C., and Zeikus, G. J. (2001) Hyperthermophilic
enzymes: Sources, uses, and molecular mechanisms for thermo-
stability. Microbiol. Mol. Biol. Rev. 65, 1−43.
(20) Cavicchioli, R., Siddiqui, K. S., Andrews, D., and Sowers, K. R.
(2002) Low-temperature extremophiles and their applications. Curr.
Opin. Biotechnol. 13, 253−261.
(21) Theriot, C. M., Du, X., Tove, S. R., and Grunden, A. M. (2010)
Improving the catalytic activity of hyperthermophilic Pyrococcus
prolidases for detoxification of organophosphorus nerve agents over a
broad range of temperatures. Appl. Microbiol. Biotechnol. 87, 1715−
1726.
(37) Pace, C. N., Vajdos, F., Fee, L., Grimsley, G., and Gray, T.
(1995) How to measure and predict the molar absorption coefficient
of a protein. Protein Sci. 4, 2411−2423.
(38) Gill, S. C., and von Hippel, P. H. (1989) Calculation of protein
extinction coefficients from amino acid sequence data. Anal. Biochem.
182, 319−326.
(39) Alldread, R. M., Halsall, D. M., Clarke, A. R., Sundaram, T. K.,
Atkinson, T., Scawen, M. D., and Nicholls, D. J. (1995) Catalytic-rate
improvement of a thermostable malate dehydrogenase by a subtle
alteration in cofactor binding. Biochem. J. 305 (Part 2), 539−548.
(40) Woodyer, R., Zhao, H., and van derDonk, W. A. (2005)
Mechanistic investigation of a highly active phosphite dehydrogenase
mutant and its application for NADPH regeneration. FEBS J. 272,
3816−3827.
(41) Ambroziak, W., Kosley, L. L., and Pietruszko, R. (1989) Human
aldehyde dehydrogenase: Coenzyme binding studies. Biochemistry 28,
5367−5373.
(42) Miyazaki, K., and Oshima, T. (1994) Co-enzyme specificity of
3-isopropylmalate dehydrogenase from Thermus thermophilus HB8.
Protein Eng. 7, 401−403.
(43) Hurley, J. H., and Dean, A. M. (1994) Structure of 3-
isopropylmalate dehydrogenase in complex with NAD+: Ligand-
induced loop closing and mechanism for cofactor specificity.
Structure 2, 1007−1016.
(22) Zhong, C. Q., Song, S., Fang, N., Liang, X., Zhu, H., Tang, X. F.,
and Tang, B. (2009) Improvement of low-temperature caseinolytic
activity of a thermophilic subtilase by directed evolution and site-
directed mutagenesis. Biotechnol. Bioeng. 104, 862−870.
(23) Sasaki, M., Uno, M., Akanuma, S., and Yamagishi, A. (2008)
Random mutagenesis improves the low-temperature activity of the
tetrameric 3-isopropylmalate dehydrogenase from the hyperthermo-
phile Sulfolobus tokodaii. Protein Eng., Des. Sel. 21, 721−727.
(24) Sriprapundh, D., Vieille, C., and Zeikus, J. G. (2003) Directed
evolution of Thermotoga neapolitana xylose isomerase: High activity on
glucose at low temperature and low pH. Protein Eng. 16, 683−690.
́
(25) Lonn, A., Gardonyi, M., van Zyl, W., Hahn-Hagerdal, B., and
̈
̈
(44) Bjelic, S., Brandsdal, B. O., and Aqvist, J. (2008) Cold
adaptation of enzyme reaction rates. Biochemistry 47, 10049−10057.
(45) Fields, P. A., and Houseman, D. E. (2004) Decreases in
activation energy and substrate affinity in cold-adapted A4-lactate
dehydrogenase: Evidence from the Antarctic notothenioid fish
Chaenocephalus aceratus. Mol. Biol. Evol. 21, 2246−2255.
(46) Lonhienne, T., Gerday, C., and Feller, G. (2000) Psychrophilic
enzymes: Revisiting the thermodynamic parameters of activation may
explain local flexibility. Biochim. Biophys. Acta 1543, 1−10.
(47) Fedoy, A. E., Yang, N., Martinez, A., Leiros, H. K., and Steen, I.
H. (2007) Structural and functional properties of isocitrate
dehydrogenase from the psychrophilic bacterium Desulfotalea
psychrophila reveal a cold-active enzyme with an unusual high thermal
stability. J. Mol. Biol. 372, 130−149.
(48) Leiros, H. K., Pey, A. L., Innselset, M., Moe, E., Leiros, I., Steen,
I. H., and Martinez, A. (2007) Structure of phenylalanine hydroxylase
from Colwellia psychrerythraea 34H, a monomeric cold active enzyme
with local flexibility around the active site and high overall stability.
J. Biol. Chem. 282, 21973−21986.
(49) Coquelle, N., Fioravanti, E., Weik, M., Vellieux, F., and Madern,
D. (2007) Activity, stability and structural studies of lactate
dehydrogenases adapted to extreme thermal environments. J. Mol.
Biol. 374, 547−562.
(50) Dean, A. M., and Koshland, D. E. Jr. (1993) Kinetic mechanism
of Escherichia coli isocitrate dehydrogenase. Biochemistry 32, 9302−
9309.
Otero, R. C. (2002) Cold adaptation of xylose isomerase from
Thermus thermophilus through random PCR mutagenesis. Gene
cloning and protein characterization. Eur. J. Biochem. 269, 157−163.
(26) Wintrode, P. L., Miyazaki, K., and Arnold, F. H. (2000) Cold
adaptation of a mesophilic subtilisin-like protease by laboratory
evolution. J. Biol. Chem. 275, 31635−31640.
(27) Lebbink, J. H., Kaper, T., Bron, P., van der Oost, J., and de Vos,
W. M. (2000) Improving low-temperature catalysis in the hyper-
thermostable Pyrococcus furiosus β-glucosidase CelB by directed
evolution. Biochemistry 39, 3656−3665.
(28) Merz, A., Yee, M. C., Szadkowski, H., Pappenberger, G.,
Crameri, A., Stemmer, W. P., Yanofsky, C., and Kirschner, K. (2000)
Improving the catalytic activity of a thermophilic enzyme at low
temperatures. Biochemistry 39, 880−889.
(29) Suzuki, T., Yasugi, M., Arisaka, F., Yamagishi, A., and Oshima,
T. (2001) Adaptation of a thermophilic enzyme, 3-isopropylmalate
dehydrogenase, to low temperatures. Protein Eng. 14, 85−91.
(30) Yasugi, M., Amino, M., Suzuki, T., Oshima, T., and Yamagishi,
A. (2001) Cold adaptation of the thermophilic enzyme 3-
isopropylmalate dehydrogenase. J. Biochem. 129, 477−484.
(31) Yasugi, M., Suzuki, T., Yamagishi, A., and Oshima, T. (2001)
Analysis of the effect of accumulation of amino acid replacements on
activity of 3-isopropylmalate dehydrogenase from Thermus thermophi-
lus. Protein Eng. 14, 601−607.
(32) Suzuki, T., Yasugi, M., Arisaka, F., Oshima, T., and Yamagishi,
A. (2002) Cold-adaptation mechanism of mutant enzymes of 3-
isopropylmalate dehydrogenase from Thermus thermophilus. Protein
Eng. 15, 471−476.
(33) Yamada, T., Akutsu, N., Miyazaki, K., Kakinuma, K., Yoshida,
M., and Oshima, T. (1990) Purification, catalytic properties, and
thermal stability of threo-DS-3-isopropylmalate dehydrogenase coded
by leuB gene from an extreme thermophile, Thermus thermophilus
strain HB8. J. Biochem. 108, 449−456.
(34) Imada, K., Sato, M., Tanaka, N., Katsube, Y., Matsuura, Y., and
Oshima, T. (1991) Three-dimensional structure of a highly thermo-
stable enzyme, 3-isopropylmalate dehydrogenase of Thermus thermo-
philus at 2.2 Å resolution. J. Mol. Biol. 222, 725−738.
(51) Lam, S. Y., Yeung, R. C., Yu, T. H., Sze, K. H., and Wong, K. B.
(2011) A rigidifying salt-bridge favors the activity of thermophilic
enzyme at high temperatures at the expense of low-temperature
activity. PLoS Biol. 9, e1001027.
(52) Kamtekar, S., and Hecht, M. H. (1995) Protein Motifs. 7. The
four-helix bundle: What determines a fold? FASEB J. 9, 1013−1022.
(53) Garsoux, G., Lamotte, J., Gerday, C., and Feller, G. (2004)
Kinetic and structural optimization to catalysis at low temperatures in
a psychrophilic cellulase from the Antarctic bacterium Pseudoaltero-
monas haloplanktis. Biochem. J. 384, 247−253.
(54) Thyme, S. B., Jarjour, J., Takeuchi, R., Havranek, J. J., Ashworth,
J., Scharenberg, A. M., Stoddard, B. L., and Baker, D. (2009)
8592
dx.doi.org/10.1021/bi200925f|Biochemistry 2011, 50, 8583−8593