ORGANIC
LETTERS
2
006
Vol. 8, No. 18
951-3954
Application of Aryl Siloxane
Cross-Coupling to the Synthesis of
Allocolchicinoids
3
W. Michael Seganish and Philip DeShong*
Department of Chemistry and Biochemistry, UniVersity of Maryland,
College Park, Maryland 20742
Received June 9, 2006
ABSTRACT
In this communication, we report a new approach to the allocolchicine carbocyclic skeleton based upon an aryl siloxane coupling reaction
and a phenanthrol ring expansion. These key steps allow for the selective functionalization of every carbon within the carbocyclic framework.
The siloxane coupling−phenanthrol sequence was applied to the synthesis of two allocolchicinoids, including the first fully synthetic approach
to N-acetyl colchinol-O-methyl ether (NCME).
Allocolchicine (1) and N-acetyl colchinol-O-methyl ether
approaches have been reported for the partial synthesis of
2
(NCME) (2) possess a 6-7-6 carbocyclic framework, related
allocolchicine or derivatives. Additionally, several total
3
to the 6-7-7 tricylic system present in colchicine (3). Like
syntheses of allocolchicine exist; however, there are no
1
colchicine, the allocolchicinoids are potent tubulin inhibitors.
reported total syntheses of NCME (2). This allocolchicinoid
The majority of the synthetic work related to allocolchicine
has relied on chemical degradation of colchicine to provide
allocolchicine and its analogues, and this has limited access
to novel derivatives possessing reduced toxicity. Several
possesses tubulin inhibition activity that is greater than that
of colchicine itself.
1
a
It has been demonstrated that the A and C allocolchicinoid
rings are required to maintain full biological activity.3
a,4
(
2) (a) Banwell, M. G.; Fam, M.-A.; Gable, R. W.; Hamel, E. J. Chem.
(
1) (a) Nakagawa-Goto, K.; Jung, M. K.; Hamel, E.; Wu, C.-C.; Bastow,
K. F.; Brossi, A.; Ohta, S.; Lee, K.-H. Heterocycles 2005, 65, 541-550.
b) Shi, Q.; Chen, K.; Chen, X.; Brossi, A.; Verdier-Pinard, P.; Hamel, E.;
McPhail, A. T.; Tropsha, A.; Lee, K.-H. J. Org. Chem. 1998, 63, 4018-
025. (c) Bergemann, S.; Brecht, R.; Buttner, F.; Guenard, D.; Gust, R.;
Soc., Chem Commun. 1994, 2647-2649. (b) Banwell, M. G.; Cameron, J.
M.; Corbett, M.; Dupuche, J. R.; Hamel, E.; Lambert, J. N.; Lin, C. M.;
Mackay, M. F. Aust. J. Chem. 1992, 45, 1967-1982. (c) Itoh, Y.; Brossi,
A.; Hamel, E.; Lin, C. M. HelV. Chim. Acta 1988, 71, 1199-1209. (d)
Boye, O.; Itoh, Y.; Brossi, A. HelV. Chim. Acta 1989, 72, 1690-1696. (e)
Boye, O.; Brossi, A.; Yeh, H. J. C.; Hamel, E.; Wegrzynski, B.; Toome,
V. Can. J. Chem. 1992, 70, 1237-1249.
(3) (a) Sawyer, J. S.; Macdonald, T. L. Tetrahedron Lett. 1988, 29, 4839-
4842. (b) Buettner, F.; Bergemann, S.; Guenard, D.; Gust, R.; Seitz, G.;
Thoret, S. Bioorg. Med. Chem. 2005, 13, 3497-3511. (c) Vorogushin, A.
V.; Predeus, A. V.; Wulff, W. D.; Hansen, H.-J. J. Org. Chem. 2003, 68,
5826-5831. (d) Leblanc, M.; Fagnou, K. Org. Lett. 2005, 7, 2849-2852.
(4) (a) Rossi, M.; Gorbunoff, M. J.; Caruso, F.; Wing, B.; Perez-Ramirez,
B.; Timasheff, S. N. Biochemistry 1996, 35, 3286-3289. (b) Perez-Ramirez,
B.; Gorbunoff, M. J.; Timasheff, S. N. Biochemistry 1998, 37, 1646-1661.
(
4
Seitz, G.; Stubbs, M. T.; Thoret, S. Bioorg. Med. Chem. 2003, 11, 1269-
281. (d) Brecht, R.; Seitz, G.; Guenard, D.; Thoret, S. Bioorg. Med. Chem.
1
2
000, 8, 557-562. (e) Roesner, M.; Capraro, H.-G.; Jacobson, A. E.; Atwell,
L.; Brossi, A.; Iorio, M. A.; Williams, T. H.; Sik, R. H.; Chignell, C. F. J.
Med. Chem. 1981, 24, 257-261. (f) Brossi, A.; Sharma, P. N.; Atwell, L.;
Jacobson, A. E.; Iorio, M. A.; Molinari, M.; Chignell, C. F. J. Med. Chem.
1
983, 26, 1365-1369. (g) Han, S.; Hamel, E.; Bastow, K. F.; McPhail, A.
T.; Brossi, A.; Lee, K.-H. Bioorg. Med. Chem. Lett. 2002, 12, 2851-2853.
h) Shi, Q.; Chen, K.; Brossi, A.; Verdier-Pinard, P.; Hamel, E.; McPhail,
A. T.; Lee, K.-H. HelV. Chim. Acta 1998, 81, 1023-1037.
(
1
0.1021/ol061413t CCC: $33.50
© 2006 American Chemical Society
Published on Web 08/10/2006