[18] A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M.C. Burla, G. Polidori, M. Camalli, SIR92 –
a program for automatic solution of crystal structures by direct methods, Journal of Applied
Crystallography 27(3) (1994) 435-435.
[19] G. Sheldrick, Crystal structure refinement with SHELXL, Acta Crystallogr. C71(1) (2015) 3-8.
[20] S. Parsons, H.D. Flack, T. Wagner, Use of intensity quotients and differences in absolute structure
refinement, Acta Crystallographica Section B 69(3) (2013) 249-259.
[21] A. Spek, Structure validation in chemical crystallography, Acta Crystallogr. D65 (2009) 148-155.
[22] C.F. Macrae, I.J. Bruno, J.A. Chisholm, P.R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R.
Taylor, J. van de Streek, P.A. Wood, Mercury CSD 2.0 - new features for the visualization and
investigation of crystal structures, J. Appl. Crystallogr. 41(2) (2008) 466-470.
[23] M.A. Spackman, D. Jayatilaka, Hirshfeld surface analysis, CrystEngComm 11(1) (2009) 19-32.
[24] M.A. Spackman, J.J. McKinnon, Fingerprinting intermolecular interactions in molecular crystals,
CrystEngComm 4(66) (2002) 378-392.
[25] J.J. McKinnon, D. Jayatilaka, M.A. Spackman, Towards quantitative analysis of intermolecular
interactions with Hirshfeld surfaces, Chemical Communications (37) (2007) 3814-3816.
[26] M.J. Turner, S.P. Thomas, M.W. Shi, D. Jayatilaka, M.A. Spackman, Energy frameworks: insights into
interaction anisotropy and the mechanical properties of molecular crystals, Chemical Communications
51(18) (2015) 3735-3738.
[27] M.J. Turner, J.J. McKinnon, S.K. Wolff, D.J. Grimwood, P.R. Spackman, D. Jayatilaka, M.A. Spackman,
CrystalExplorer17, University of Western Australia (2017).
[28] T. Gelbrich, M.B. Hursthouse, A versatile procedure for the identification, description and
quantification of structural similarity in molecular crystals, CrystEngComm 7(53) (2005) 324-336.
[29] T. Gelbrich, T.L. Threlfall, M.B. Hursthouse, XPac dissimilarity parameters as quantitative descriptors
of isostructurality: the case of fourteen 4,5′-substituted benzenesulfonamido-2-pyridines obtained by
substituent interchange involving CF3/I/Br/Cl/F/Me/H, CrystEngComm 14(17) (2012) 5454-5464.
[30] A. Gavezzotti, Calculation of Intermolecular Interaction Energies by Direct Numerical Integration
over Electron Densities. I. Electrostatic and Polarization Energies in Molecular Crystals, The Journal of
Physical Chemistry B 106(16) (2002) 4145-4154.
[31] A. Gavezzotti, Calculation of Intermolecular Interaction Energies by Direct Numerical Integration
over Electron Densities. 2. An Improved Polarization Model and the Evaluation of Dispersion and
Repulsion Energies, J. Phys. Chem. B 107(10) (2003) 2344-2353.
[32] A. Gavezzotti, Efficient computer modeling of organic materials. The atom–atom, Coulomb–
London–Pauli (AA-CLP) model for intermolecular electrostatic-polarization, dispersion and repulsion
energies, New J. Chem. 35(7) (2011) 1360-1368.
[33] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V.
Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J.
Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T.
Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M.J.
Bearpark, J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari,
A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N.J. Millam, M. Klene, J.E. Knox, J.B.
Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi,
C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J.
Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox,
Gaussian 09, revision D.01, Gaussian, Inc., Wallingford, CT, USA, 2013.
[34] Y. Zhao, D.G. Truhlar, The M06 suite of density functionals for main group thermochemistry,
thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new
functionals and systematic testing of four M06-class functionals and 12 other functionals, Theor. Chem.
Acc. 120(1) (2008) 215-241.