S. Higashimoto et al. / Journal of Catalysis 274 (2010) 76–83
83
Fig. 9 shows the effect of the electronic properties by the ortho-,
Appendix A. Supplementary data
meta- and para-orientation on the photocatalytic activity for the oxi-
dation of benzylic alcohols substituted with (a) –OCH3, (b) –CH3, (c)
–CF3 and (d) –NO2 into corresponding aldehyde. It was observed that
methoxybenzaldehyde and methylbenzaldehyde in meta-orienta-
tion are photo-formed more efficiently than in ortho- and para-ori-
entation, while nitrobenzaldehyde and (trifluoromethyl)-
benzaldehyde in ortho- and para-orientation are formed more effi-
ciently than in meta-orientation.
Supplementary data associated with this article can be found, in
References
[1] G.J. Brink, I.W.C.E. Arends, R.A. Sheldon, Science 287 (2000) 1636.
[2] T. Mallat, A. Baiker, Chem. Rev. 104 (2004) 3037.
[3] M. Nechab, C. Einhorn, J. Einhorn, Chem. Commun. (2004) 1500.
[4] K. Mori, T. Hara, T. Mizugaki, K. Ebitani, K. Kaneda, J. Am. Chem. Soc. 126 (2004)
10657.
[5] A.H. Lu, W.C. Li, Z. Hou, F. Schueth, Chem. Commun. 10 (2007) 1038.
[6] H. Tsunoyama, H. Sakurai, N. Negishi, T. Tsukuda, J. Am. Chem. Soc. 127 (2005)
9374.
[7] M. Turner, V.B. Golovko, O.P.H. Vaughan, P. Abdulkin, A. Berenguer-Murcia,
M.S. Tikhov, B.F.G. Johnson, R.M.G. Lambert, Nature 454 (2008) 981.
[8] A. Abad, C. Almela, A. Corma, H. Garcia, Chem. Commun. (2006) 3178.
[9] D.I. Enache, J.K. Edwards, P. Landon, B. Solsona-Espriu, A.F. Carley, A.A. Herzing,
M. Watanabe, C.J. Kiely, D.W. Knight, G.J. Hutchings, Science 311 (2006) 362.
[10] K. Yamaguchi, N. Mizuno, Angew. Chem. Int. Ed. 41 (2002) 4538.
[11] K. Yamaguchi, J.W. Kim, J. He, N. Mizuno, J. Catal. 268 (2009) 343.
[12] K. Yamaguchi, K. Mori, T. Mizugaki, K. Ebitani, K. Kaneda, J. Am. Chem. Soc. 122
(2000) 7144.
[13] Y.H. Ng, S. Ikeda, T. Harada, Y. Morita, M. Matsumura, Chem. Commun. (2008)
3181.
[14] S. Funyu, T. Isobe, S. Takagi, D.A. Tryk, H. Inoue, J. Am. Chem. Soc. 125 (2003)
5734.
[15] A. Tashiro, A. Mitsuishi, R. Irie, T. Katsuki, Syn. Lett. 12 (2003) 1868.
[16] K. Ohkubo, K. Suga, S. Fukuzumi, Chem. Commun. 19 (2006) 2018.
[17] T. Shishido, T. Miyatake, K. Teramura, Y. Hitomi, H. Yamashita, T. Tanaka, J.
Phys. Chem. C 113 (2009) 18713.
[18] M. Kitano, K. Iyatani, K. Tsujimaru, M. Matsuoka, M. Takeuchi, M. Ueshima, J.M.
Thomas, M. Anpo, Top. Catal. 49 (2008) 24.
[19] M. Grätzel, J. Photochem. Photobiol. C: Photochem. Rev. 4 (2003) 145.
[20] A. Fujishima, T.N. Rao, D.A. Tryk, J. Photochem. Photobiol. C: Photochem. Rev. 1
(2000) 1.
Here, Scheme 2I and II proposes the resonant structures of the
methoxybenzyl alcohol radicals and nitrobenzyl alcohol radicals
as representative of categories A and B, respectively. The resonant
structures of the methoxybenzyl alcohol radicals were found to be
more stabilized in ortho- and para-orientation than in meta-orien-
tation, as shown in Scheme 2I. Assuming that the un-stabilized res-
onant structures of the methoxybenzyl alcohol radicals efficiently
promote further reactions, the methoxybenzaldehyde in meta-ori-
entation is more efficiently formed than in ortho- and para-orienta-
tion. On the other hand, the resonant structures of the nitrobenzyl
alcohol radicals were found to be more de-stabilized in ortho- and
para-orientation than in meta-orientation, as shown in Scheme 2II.
Therefore, the nitrobenzaldehyde in ortho- and para-orientation is
more efficiently formed than in meta-orientation. The effect of the
orientation on the photocatalytic activity could, thus, be clearly ex-
plained by the stability of the resonant structures of the benzylic
alcohol radicals, i.e., the resonant structures of the radicals in
meta-orientation for category A and in ortho- and para-orientation
for category B enhance destabilization, leading to further reactions
to form corresponding aldehydes.
[21] M.A. Fox, M.T. Dulay, Chem. Rev. 93 (1993) 341.
5. Conclusions
[22] J.D.F. Ollis, W.H. Rulkens, H. Bruning, Water Res. 33 (1998) 669.
[23] D.S. Muggli, J.T. Mccue, J.L. Falconer, J. Catal. 173 (1998) 470.
[24] J.L. Falconer, K.A. Magrini-Bair, J. Catal. 179 (1998) 171.
[25] F.H. Hussein, G. Pattenden, R. Rudham, J.J. Russell, Tetrahedron Lett. 25 (1984)
3363.
[26] U.R. Pillai, E. Sahle-Demessie, J. Catal. 211 (2002) 434.
[27] O.S. Mohamed, A.E.M. Gaber, A.A. Abdel-Wahab, J. Photochem. Photobiol. A
148 (2002) 205.
[28] S. Farhadi, M. Afshari, M. Maleki, Z. Badazadeh, Tetrahedron Lett. 46 (2005)
8483.
[29] S. Yurdakal, G. Palmisano, V. Loddo, V. Augugliaro, L. Palmisano, J. Am. Chem.
Soc. 130 (2008) 1568.
[30] V. Augugliaro, T. Caronna, V. Loddo, G. Marci, G. Palmisano, L. Palmisano, S.
Yurdakal, Chem. A. Eur. J. 14 (2008) 4640.
[31] G. Palmisano, S. Yurdakal, V. Augugliaro, V. Loddo, L. Palmisano, Adv. Synth.
Catal. 349 (2007) 964.
[32] G. Palmisano, M. Addamo, V. Augugliaro, T. Caronna, E. Garcia-Lopez, V. Loddo,
L. Palmisano, Chem. Commun. (2006) 1012.
[33] M. Addamo, V. Augugliaro, M. Bellardita, A. Di Paola, V. Loddo, G. Palmisano, L.
Palmisano, S. Yurdakal, Catal. Lett. 126 (2008) 58.
The photocatalytic oxidation of benzyl alcohol and its deriva-
tives on TiO2 in the presence of O2 were investigated under visible
light irradiation. It was found that the selective photocatalytic oxi-
dation of benzylic alcohols into corresponding aldehydes pro-
ceeded with high conversion of >99% and high selectivity of
>99%. These visible light–induced reactions were attributed to
the oxidation of the surface complex formed by the interaction of
benzylic alcohol with TiO2.
The photocatalytic activity of the benzylic alcohols was en-
hanced by phenyl-ring substitution with the electron-releasing
groups (–OCH3, –CH3, –C(CH3)3) as well as the electron-withdraw-
ing groups (–Cl, –CF3 and –NO2). These phenomena could be ex-
plained by a combination of the oxidizability with the phenyl-
ring of benzylic alcohol to form the benzylic alcohol radical cation
[34] S. Yurdakal, G. Palmisano, V. Loddo, O. Alagoez, V. Augugliaro, L. Palmisano,
Green Chem. 11 (2009) 510.
and the efficiency for a-C–H de-protonation from the radical cation.
It was also shown that the orientation of the phenyl-ring substitu-
ents influences the photocatalytic activity, i.e., the more de-stabi-
lized the resonant structures of the benzyl alcoholic radicals in
meta-orientation of category A and in ortho- and para-orientation
of category B, the more efficient the conversion into corresponding
aldehydes. To the best of our knowledge, this is the first report char-
acterizing the effect of the substituents for the photocatalytic oxi-
dation of benzylic alcohol into corresponding aldehydes under
visible light irradiation. The results of this work are useful in the
utilization of clean and safe solar energy while practical studies
for photocatalytic organic synthesis are presently underway.
[35] T. Ohno, Y. Masaki, S. Hirayama, M. Matsumura, J. Catal. 204 (2001) 163.
[36] S. Higashimoto, N. Kitao, N. Yoshida, T. Sakura, M. Azuma, H. Ohue, Y. Sakata, J.
Catal. 266 (2009) 279.
[37] S. Higashimoto, K. Okada, T. Morisugi, A. Nakagawa, M. Azuma, H. Ohue, T.H.
Kim, M. Matsuoka, M. Anpo, Top. Catal. 53 (2010) 578.
[38] Y. Wang, K. Hang, N.A. Anderson, T. Lian, J. Phys. Chem. B 107 (2003) 9434.
[39] T. Tachikawa, S. Tojo, M. Fujitsuka, T. Majima, Langmuir 20 (2004) 2753.
[40] D.T. Sawyer, A. Sobkowiak, J.L. Roberts (Eds.), Electrochemistry for Chemists,
John Wiley & Sons, Inc., New York, 1996, p. 369 (translated in Japanese).
[41] H. Lund, O. Hammerich (Eds.), Organic Electrochemistry, Marcel Dekker, New
York, 2001, p. 611.
[42] T. Hirakawa, P.V. Kamat, Langmuir 20 (2004) 5645.
[43] B. Branchi, M. Bietti, G. Ercolani, M.A. Izquierdo, M.A. Miranda, L. Stella, J. Org.
Chem. 69 (2004) 8874.