J. Am. Chem. Soc. 2001, 123, 10395-10396
10395
Chiral Porous Solids Based on Lamellar Lanthanide
Phosphonates
Owen R. Evans, Helen L. Ngo, and Wenbin Lin*
Department of Chemistry, CB #3290
UniVersity of North Carolina
Chapel Hill, North Carolina 27599
ReceiVed June 8, 2001
There has been tremendous recent interest in the design and
synthesis of functional solids based on metal-organic coordina-
tion networks.1-7 In contrast to inorganic zeolites, metal-organic
frameworks are typically synthesized under mild conditions and
thus allow rational design of novel materials by incorporating
bridging ligands with desired size, shape, chirality, and electronic
properties. Over the past few years, many metal-organic
coordination networks have been shown to exhibit unique
properties including functional group/size selective sorption,
catalysis, gas storage, molecular recognition, and second harmonic
generation.2,6-7 With a few notable exceptions,6 homochiral
metal-organic frameworks have not been explored for applica-
tions in heterogeneous asymmetric catalysis and enantioselective
separation. Motivated by elegant work of Mallouk et al. on
preparative-scale chiral separation of a racemic mixture of
naphthylamines using R-Zr(HPO4)2 intercalated with chiral cy-
clophanes,5 we have recently explored the design and synthesis
of thermally and hydrolytically robust, single-crystalline, chiral
porous metal-organic frameworks based on metal bisphospho-
nates. Herein we wish to report the synthesis, structures, chiral
separation, and catalytic properties of a series of homochiral
porous lamellar lanthanide bisphosphonates.
Figure 1. Coordination environment of 1f. The asymmetric unit
(excluding water guest molecules) is shown with ellipsoids at 30%
probability.
intense and broad O-H stretching vibrations between 3700 and
3200 cm-1. Thermogravimetric analyses show that 1a-g lose
11.7-17.4% of total weight by 90 °C, corresponding to the loss
of 9-14 water molecules per formula unit (expected 11.6-
17.2%).9 These formulations have been supported by microanaly-
sis results (Supporting Information).
A single-crystal X-ray diffraction study performed on [Gd(R-
L-H2)(R-L-H3)(H2O)4]‚12H2O (R-1f) reveals a 2D lamellar struc-
ture consisting of 8-coordinate Gd centers and bridging binaph-
thylbisphosphonate groups. 1f crystallizes in the chiral space group
P212121.10 The asymmetric unit of 1f consists of one Gd center,
two bridging binaphthylbisphosphonate groups, four coordinated
water molecules and 12 water guest molecules (Figure 1). The
Gd center adopts a square anti-prismatic geometry by coordinating
to four water molecules and four phosphonate oxygen atoms of
four different binaphthylbisphosphonate ligands. Three of the four
crystallographically independent phosphonate groups (P1-P3) are
monodeprotonated and coordinate to the Gd center in a mono-
dentate fashion, while the fourth phosphonate group (P4) remains
protonated and also coordinates to the Gd center in a monodentate
fashion.11 If we disregard the coordinated water molecules, the
four phosphonate groups coordinate to the Gd center in a highly
distorted tetrahedral geometry with O-Gd-O angles ranging from
81.4 to 147.4°. The binaphthyl subunits have dihedral angles of
118.2 and 121.0° for L-H2 and L-H3, respectively. The skewed
configuration of the binaphthyl subunits in combination with the
distorted tetrahedral phosphonate coordination allows the forma-
tion of an elongated 2D rhombohedral grid lying in the ac plane
(Figure 2a). The 2D grid has Gd-Gd-Gd angles of 153.6 and
26.7°, and Gd-Gd separations of 16.83 and 16.78 Å. Such 2D
Homochiral lanthanide bisphosphonates with the general
formula of [Ln(L-H2)(L-H3)(H2O)4]‚xH2O (Ln ) La, Ce, Pr, Nd,
Sm, Gd, Tb, x ) 9-14, 1a-g) were synthesized by slow
evaporation of an acidic mixture of nitrate or perchlorate salts of
Ln(III) and 2,2′-diethoxy-1,1′-binaphthalene-6,6′-bisphosphonic
acid(L-H4)8 in methanol at room temperature (eq 1). The IR
(6) 1H NMR spectra of a digested mixture of Na2(EDTA) and 1a in D2O
show the absence of peaks characteristic of methanol, indicating that the
volatile guest species in 1a-g are water molecules.
spectra of 1a-g display strong phosphorus-oxygen stretches at
950-1150 cm-1. In addition, the IR spectra of 1a-g also exhibit
(7) (a) Seo, J. S.; Whang, D.; Lee, H.; Jun, S. I.; Oh, J.; Jeon, Y. J.; Kim,
K. Nature 2000, 404, 982. (b) Kepert, C. J.; Prior, T. J.; Rosseinsky, M. J. J.
Am. Chem. Soc. 2000, 122, 5158.
(1) (a) Desiraju, G. R. Crystal Engineering: The Design of Organic Solids;
Elsevier: New York, 1989. (b) Lehn, J.-M. Supramolecular Chemistry:
Concepts and PerspectiVes; VCH Publishers: New York, 1995. (c) Batten,
S. R.; Robson, R. Angew. Chem., Int. Ed. 1998, 37, 1461. (d) Zawarotko, M.
J. Chem. Soc. ReV. 1994, 283.
(2) (a) Fujita, M.; Kwon, Y. J.; Washizu, S.; Ogura, K. J. Am. Chem. Soc.
1994, 116, 1151. (b) Eddaoudi, H. L.; O’Keeffe, M.; Yaghi, O. M. Nature
1999, 402, 276. (c) Gardner, G. B.; Kiang, Y. H.; Lee, S.; Asgaonkar, A.;
Venkataraman, D. J. Am. Chem. Soc. 1996, 118, 6946. (d) Kiang, Y. H.;
Gardner, G. B.; Lee, S.; Xu, Z. T.; Lobkovsky, E. B. J. Am. Chem. Soc. 1999,
121, 8204.
(3) (a) Clearfield, A. Prog. Inorg. Chem. 1998, 47, 371. (b) Clearfield, A.
Chem. Mater. 1998, 10, 2801. (c) Alberti, G. ComprehensiVe Supramolecular
Chemistry; Pergamon Press: New York, 1996; Vol. 7, pp 151-185. (d) Cao,
G.; Lynch, V. M.; Swinnea, J. S.; Mallouk, T. E. Inorg. Chem. 1990, 29,
2112.
(4) (a) Mallouk, T. E.; Gavin, J. A. Acc. Chem. Res. 1998, 31, 209. (b)
Zhang, Y.; Frink, K. J.; Clearfield, A. Chem. Mater. 1993, 5, 495. (c) Frink,
K. J.; Wang, R.-C.; Colon, J. L.; Clearfield, A. Inorg. Chem. 1991, 30, 1438.
(d) Johnson, J. W.; Jacobsen, A. J.; Butler, W. M.; Rosenthal, S. E.; Brady,
J. F.; Lewandowski, J. T. J. Am. Chem. Soc. 1989, 111, 381.
(5) Garcia, M. E.; Naffin, J. L.; Deng, N.; Mallouk, T. E. Chem. Mater.
1995, 7, 1968.
(8) (a) Lin, W.; Evans, O. R.; Xiong, R.-G.; Wang, Z. J. Am. Chem. Soc.
1998, 120, 13272. (b) Lin, W.; Wang, Z.; Ma, L. J. Am. Chem. Soc. 1999,
121, 11249. (c) Evans, O. R.; Xiong, R.-G.; Wang, Z.; Wong, G. K.; Lin, W.
Angew. Chem., Int. Ed. 1999, 38, 536. (d) Lin, W.; Ma, L.; Evans, O. R.
Chem. Commun. 2000, 2263. (e) Evans, O. R.; Lin, W. Chem. Mater. 2001,
13, 2705.
(9) L-H4 was synthesized via a Pd-catalyzed phosphonation reaction
between 6, 6′-dibromo-2,2′-diethoxy-1,1′-binaphthalene and diethyl phosphite.
See: (a) Jaffre`s, P.-A.; Bar, N.; Villemin, D. J. Chem. Soc., Perkin Trans. 1
1998, 2083. (b) Hirao, T.; Masunaga, T.; Ohshiro, Y.; Agawa, T. Synthesis
1981, 56.
(10) X-ray single-crystal diffraction data for 1f was collected on a Bruker
SMART CCD diffractometer. Crystal data for 1: orthorhombic, space group
P212121, with a ) 7.771(1) Å, b ) 23.900(2) Å, and c ) 32.676(2) Å, V )
6068.8(6) Å3, Z ) 4, Dcalc ) 1.63 g/cm3, T ) 213 K, Mo KR radiation (λ )
0.71073 Å). Least-squares refinement based on 8025 reflections with I > 2σ-
(I) and 708 parameters led to convergence, with a final value of R1 ) 0.097
and wR2 ) 0.188. Flack parameter ) 0.03(2).
(11) The P-O distances about P4 are consistent with this formulation. The
P4-O11 distance is 1.47 Å, whereas the P-OH distances are 1.54 and 1.55
Å, respectively.
10.1021/ja0163772 CCC: $20.00 © 2001 American Chemical Society
Published on Web 09/28/2001