10.1002/ejoc.201700179
European Journal of Organic Chemistry
FULL PAPER
integration of signals of products in NMR spectra with comparison of
signal intensity of weight standard (PhCF3) added.
1,1,8-trifluoro-7-hydroxy-2(1H)-naphthalenone.
1H NMR
(300 MHz,
CD3CN, 25°C, TMS): δ=6.09 (dt, J=10.2, 3.0 Hz, 1H, H3) 7.11 - 7.24 (m,
2H, H5,6) 7.54 (dd, J=10.2, 2.1 Hz, 1H, H4) 8.13 (br. s., 1H, OH); 13C (101
MHz, CD3CN, 25°C, TMS): δ= 105.7 (td, J=244.6, 1.8 Hz, C1) 121.1 (td,
J=22.3, 9.3 Hz, C8a) 121.5 (td, J=2.5, 0.8 Hz, C3) 121.7 (dt, J=3.8, 1.6 Hz,
C6) 124.1 (td, J=5.4, 1.8 Hz, C4a) 128.6 (d, J=3.2 Hz, C5) 147.7 (dt, J=3.4,
1.6 Hz, C4) 149.0 (dt, J=12.7, 2.0 Hz, C7) 152.6 (dt, J=254.5, 2.0 Hz, C8)
186.9 (t, J=24.0 Hz, C2); 19F (282 MHz, CDCl3, 25°C, CFCl3): -102.5 (d,
2F, J = 15 Hz), -150.5 (dt, 1F, J1 = 15 Hz, J2 = 8 Hz). UV-vis (CH3OH),
λmax nm, (lg ε): 243 (4.26), 266 (4.18), 459 (3.98). IR (KBr, cm-1):
ν¯= 3325 (OH); 1672 (C=O); 1603; 1572; 1514; 1473; 1317; 1289; 1214;
1173; 1119; 1063; 1007; 853. HRMS: calcd. for C10H5F3O2
m/z= 214.0242, found: m/z 214.0240 [M+].
General procedure for fluorination of naphthalene-2-ols with F-
TEDA-BF4 followed by vacuum sublimation. Naphthalene-2-ol (1.00 g,
7 mmol) and F-TEDA-BF4 (5.46 g, 10 mmol) were ground in mortar at
room temperature for 30 min. the mixture was maintained at room
temperature overnight and then sublimed in vacuo at 70˚С to yield 1,1-
difluoronaphthalen-2(1H)-one as yellow needles (0.88 g, 70%). mp 51˚С
(cf. 50˚С [45]).
General procedure for fluorination of naphthalenols and estron with
F-TEDA-BF4 in the presence of alkali metal carbonates. A mixture of
phenol (0.5 mmol) and metal carbonate (0.5 mmol) was ground in agate
mortar for 10 min. Then fluorination reagent (0.5 mmol) was added and
the reaction mixture was ground for additional 30 min., then was
extracted with ether, the solvent was removed in vacuo to yield a crude
product. Residue was dissolved in CDCl3 or acetone-d6 and directly
analyzed by 1H, 19F NMR spectroscopy and GC/MS. Yields were
determined by integration of signals of products in NMR spectra with
comparison of signal intensity of weight standard added (-
trifluorotoluene, PhCF3, or C6F6 for 19F, CH2Br2 for 1H).
Acknowledgements
Financial support from the Russian Foundation for Basic
Research [grant number 16-33-00944] and the Chemistry and
Material Science Department of the Russian Academy of
Sciences (project no. 5.1.4) is gratefully acknowledged. Authors
thank Chemical Service Center of the Siberian Branch of the
Russian Academy of Sciences at N.N. Vorozhtsov Novosibirsk
Institute of Organic Chemistry SB RAS for spectral analysis.
6-bromo-1,1-difluoro-2(1H)-naphthalenone. m.p. 67.4-68.3°C; 1H NMR
(300 MHz, CDCl3, 25°C, TMS): δ=6.28 (dt, J=10.2, 2.7 Hz, 1H, H3) 7.57
(d, J=10.2 Hz, 1H, H4) 7.63 - 7.88 (m, 3H, H5,7,8); 13C NMR (126 MHz,
CDCl3, 25°C, TMS) δ=105.1 (t, J=245.3 Hz, C1) 124.5 (t, J=2.4 Hz, C8)
126.4 (t, J=2.5 Hz, C6) 129.1 (t, J=3.3 Hz, C3) 131.7 (t, J=23.9 Hz, C8a)
131.9 (t, J=5.5 Hz, C4a) 132.5 (s, C5) 133.6 (t, J=1.8 Hz, C7) 143.9 (s, C4)
186.6 (t, 2J(C,F)=25.1 Hz, C2) 19F (282 MHz, CDCl3, 25°C, CFCl3): δ -
101.4 (s); IR (KBr): 1699 cm−1 (C=O); UV/Vis (CHCl3): λmax (ε,
mol−1dm3cm−1) 240 (300), 320 nm (54); elemental analysis: calcd (%) for
C10H5BrF2O (259.1): С 46.36, Н 1.95, F 14.67, Br 30.85; found: С 46.07,
Н 1.80, F 14.64, Br 31.01.
Keywords: Aromatic substitution • Electrophilic substitution •
Fluorine • Solid-state reactions • Sustainable Chemistry
[1]
[2]
I. Ojima, Fluorine in Medicinal Chemistry and Chemical Biology;
Blackwell, 2009, p. 1.
J. Wang, M. Sánchez-Roselló, J. L. Aceña, C. del Pozo, A. E.
Sorochinsky, S. Fustero, V. A. Soloshonok, H. Liu, Chem. Rev. 2014,
114, 2432-2506.
7-bromo-1,1-difluoro-2(1H)-naphthalenone. Rf=0.54 (SiO2, CHCl3); m.p.
92.2-96.7°C; 1H NMR (300 MHz, CDCl3, 25°C, TMS): δ=6.28 (dt,
3J(H,H)=10.2 Hz, 4J(H,F)=2.7 Hz, 1Н, H3), 7.24-7.28 (m, 1Н, H5), 7.42 (d,
3J(H,H)=10.2 Hz, 1Н, H4), 7.66-7.75 (m, 1Н, H6), 7.95-8.01 (m, 1Н, H8);
13C (101 MHz, CDCl3, 25°C, TMS): δ=104.8 (t, 1J(C,F)=246.4 Hz, C1),
123.7 (t, J(C,F)=2.4 Hz, C3), 125.7 (t, J(C,F)=2.3 Hz, C7), 129.1 (t,
J(C,F)=5.6 Hz, C4a), 131.0 (t, J(C,F)=3.6 Hz, C8), 131.1 (s, C5), 134.7 (t,
2J(C,F)=23.6 Hz, C8a), 135.4 (t, J(C,F)=2.0 Hz, C6), 144.7 (t, J(C,F)=1.5
Hz, C4), 186.4 (t, 2J(C,F)=24.6 Hz, C2); 19F (282 MHz, CDCl3, 25°C,
CFCl3): δ=-101.4 (s); IR (KBr): =1693 cm−1 (C=O); UV/Vis (CHCl3): λmax
(ε)=240 (300), 320 nm (54 mol−1dm3cm−1); elemental analysis: calcd (%)
for C10H5BrF2O (259.1): С 46.36, Н 1.95, F 14.67, Br 30.85; found: С
46.40, Н 1.99, F 14.39, Br 31.00.
[3]
V. Gouverneur, K. Muller, Fluorine in Pharmaceutical and Medicinal
Chemistry: From Biophisical Aspects to Clinical Applications, Imperial
College Press, London, 2012, p. 1.
[4]
[5]
A. A. Gakh, M. N. Burnett, J. Fluor. Chem. 2011, 132, 88-93.
D. E. Yerien, S. Bones, A. Postigo, Org. Biomol. Chem. 2016,14, 8398-
8427.
[6]
[7]
A. M. Thayer, Chem. Eng. News 2006, 84, 15-24.
D. J. C. Constable, P. J. Dunn, J. D. Hayler, G. R. Humphrey, J. L.
Leazer, Jr., R. J. Linderman, K. Lorenz, J. Manley, B. A. Pearlman, A.
Wells, A. Zaksh, T. Y. Zhang, Green Chem. 2007, 9, 411-420.
a) R. P. Singh, J. M. Shreeve, Acc. Chem. Res. 2004, 37, 31-44. B) P.
T. Nyffeler, S. G. Durón, M. D. Burkart, S. P. Vincent, C.-H. Wong,
Angew. Chem. Int. Ed. 2005, 44, 192-212.
[8]
[9]
1,1-difluoro-7-hydroxy-2(1H)-naphthalenone. mp 147.1-147.2°C; 1H NMR
3
4
(300 MHz, CDCl3, 25°C, TMS): δ=6.06 (dt, J(H,H)=10.0 Hz, J(H,F)=2.7
Hz, 1H, H3) 6.41 (br. s, 1H, OH) 6.90 - 6.97 (m, 1H, H6) 7.20 - 7.26 (m,
1H, H5) 7.26 - 7.30 (m, 1H, H8) 7.37 (d, 3J(H,H)=10.0 Hz, 1H, H4); 13C
(101 MHz, CDCl3, 25°C, TMS): 105.3 (t, J(C,F)=245.6 Hz, C1) 115.8 (t,
J(C,F)=3.5 Hz, C8) 118.7 (t, J(C,F)=1.7 Hz, C6) 120.9 (t, J(C,F)=2.3 Hz,
C3) 123.4 (t, J(C,F)=5.2 Hz, C4a) 132.1 (s, C5) 135.7 (t, J(C,F)=23.5 Hz,
C8a) 146.1 (s, C4) 158.6 (t, J(C,F)=1.7 Hz, C7) 187.8 (t, J(C,F)=24.1 Hz,
C2); 19F (282 MHz, CDCl3, 25°C, CFCl3): -102.0 (s, 2F).; IR (KBr): 3354;
2924; 1684; 1612; 1558; 1510; 1346; 1315; 1250; 1227; 1190; 1149;
1041; 883; 845 cm-1; UV-Vis (MeOH): λmax, nm (lgε) = 249 (4.18), 376
(4.75); HRMS found m/z 196.0329 [M+]. Calc. for C10H6F2O2. M =
196.0336; elem. anal. found, %: C 61.31, H 3.06; F 19.20. calc. for
C10H6F2O2, %: C 61.23; H 3.08; F 19.37.
J. Baudoux, D. Cahard, Electrophilic Fluorination with N–F Reagents.
Organic Reactions, John Wiley & Sons, Inc., Hoboken, 2007, 69, 347-
672.
[10] P. T. Anastas, J. C. Warner, Green Chemistry: Theory and Practice,
Oxford University Press, Oxford, 1998, p. 1.
[11] P. Anastas, N. Eghbali, Chem. Soc. Rev. 2010, 39, 301-312.
[12] a) K. K. Laali, G. I. Borodkin, J. Chem. Soc., Perkin Trans. 2 2002, 953-
957; b) J. Pavlinac, M. Zupan, K. K. Laali, S. Stavber, Tetrahedron
2009, 65, 5625–5662.
[13] a) M. R. P. Heravi, J. Fluor. Chem. 2008, 129, 217-221; b) G.I.
Borodkin, I.R. Elanov, Y.V. Gatilov, V. G. Shubin, RSC Adv., 2016, 6,
60556- 60564.
This article is protected by copyright. All rights reserved.