C. Agami et al. / Tetrahedron Letters 43 (2002) 2521–2523
2523
In summary, we have found an easy and efficient route
to oxazolactams 2 in two steps from (S)-phenylglycinol.
We are currently investigating the stereochemical aspect
of this bis-cyclization in order to enhance the stereose-
lectivity of the process. Moreover, we have shown that
the regioselectivity of the reaction (i.e. aza-annulation
versus N-acylation) is strongly dependent on the substi-
tution of the b-carbonyl position.
Sun, L. Q.; Wang, S.; Saxena, A.; Doctor, B. P. J. Am.
Chem. Soc. 1996, 118, 11357; (m) Benovsky, P.; Stille, J.
R. Tetrahedron Lett. 1997, 38, 8475; (n) Beholz, L. G.;
Benovsky, P.; Ward, D. L.; Barta, N. S.; Stille, J. R. J.
Org. Chem. 1997, 62, 1033; (o) Danieli, B.; Martinelli, L.
M.; Passarella, D.; Silvani, A. J. Org. Chem. 1997, 62,
6519; (p) Benovsky, P.; Stephenson, G. A.; Stille, J. R. J.
Am. Chem. Soc. 1998, 120, 2493; (q) Hadden, M.;
Nieuwenhuyzen, M.; Potts, D.; Stevenson, P. J. J. Chem.
Soc., Perkin Trans. 1 1998, 3437; (r) Cimarelli, C.;
Palmieri, G. Tetrahedron 1998, 54, 915.
The use of oxazolactams 2 as chiral templates in asym-
metric synthesis should allow a rapid access to polysub-
stituted chiral non racemic piperidines. In this context,
our first objective is the preparation of enantiopure
4
. (a) Wagman, A. S.; Wang, L.; Nuss, J. M. J. Org. Chem.
2000, 65, 9103; (b) Paulvannan, K.; Chen, T. J. Org.
12
derivatives of nipecotinic acid.
Chem. 1994, 65, 6160.
5
6
. For a review see: Graning, M. D.; Meyers, A. I. Tetra-
hedron 2000, 56, 9843.
. A similar N-acyloxazolidine was obtained by treatment
of ethoxycarbonyl norephedrine with 3,3-diethoxy propi-
onate under acidic conditions: Garcia-Valverde, M.;
Nieto, J.; Pedrosa, R.; Vicente, M. Tetrahedron 1999, 55,
References
1
. (a) Hua, D. H.; Narasimha Bharathi, S.; Panangadan, J.
A. K.; Tsujimoto, A. J. Org. Chem. 1991, 56, 6998; (b)
Hua, D. H.; Park, J. G.; Katsuhira, T.; Narasimha
Bharathi, S. J. Org. Chem. 1993, 58, 2144; (c) Audia, J.
E.; Droste, J. J.; Dunigan, J. M.; Bowers, J.; Heath, P.
C.; Holme, D. W.; Eifert, J. H.; Kay, H. A.; Miller, R.
D.; Olivares, J. M.; Rainey, T. F.; Weigel, L. O. Tetra-
hedron Lett. 1996, 37, 4121; (d) Astleford, B. A.; Audia,
J. E.; Deeter, J.; Heath, P. C.; Janisse, S. K.; Kress, T. J.;
Wepsiec, J. P.; Weigel, L. O. J. Org. Chem. 1996, 61,
2755.
1
2
7
. The reaction with substrate 1 (R =H, R =OMe) was
realized at different temperatures, and for different dura-
tions, giving always the same compound distribution 4/5.
. For a discussion of the mechanism see: (a) Barta, N. S.;
Brode, A.; Stille, J. R. J. Am. Chem. Soc. 1994, 116, 620;
8
(
b) Agami, C.; Hamon, L.; Kadouri-Puchot, C.; Le
Guen, V. J. Org. Chem. 1996, 61, 5736.
. Paulvannan, K.; Stille, J. R. J. Org. Chem. 1992, 57,
4
450.
9
2
. (a) Hickmott, P. W.; Sheppard, G. J. Chem. Soc. C 1971,
5319.
1
1
358; (b) Hickmott, P. W.; Sheppard, G. J. Chem. Soc. C
971, 2112.
. (a) Wiesner, K.; Poon, L.; Jirkovsky, I. Can. J. Chem.
1
1
0. Spectral analysis of the major diastereomer 2a: H NMR
(
(
250 MHz, CDCl ): 1.47 (s, 3H), 2.12–2.24 (m, 2H), 2.49
m, 1H), 2.65 (m, 1H), 2.76 (dd, J=8.5 and 9 Hz, 1H),
3
3
1
969, 47, 433; (b) Shono, T.; Matsumura, Y.; Kashimura,
3.78 (s, 3H), 3.99 (dd, J=7.8 and 9.2 Hz), 4.55 (dd,
S. J. Org. Chem. 1981, 46, 3719; (c) Brunerie, P.; Celerier,
J. P.; Huche, M.; Lhommet, G. Synthesis 1985, 735; (d)
Capps, N. K.; Davies, G. M.; Loakes, D.; McCabe, R.
W.; Young, D. W. J. Chem. Soc., Perkin Trans. 1 1991,
077; (e) Paulvannan, K.; Stille, J. R. Tetrahedron Lett.
993, 34, 8197; (f) Paulvannan, K.; Schwarz, J. B.; Stille,
J. R. Tetrahedron Lett. 1993, 34, 215; (g) Paulvannan, K.;
Stille, J. R. Tetrahedron Lett. 1993, 34, 6673; (h) Cook,
G. R.; Beholz, L. G.; Stille, J. R. Tetrahedron Lett. 1994,
5, 1669; (i) Paulvannan, K.; Stille, J. R. J. Org. Chem.
994, 59, 1613; (j) Cook, G. R.; Beholz, L. G.; Stille, J.
J=8.2 and 9 Hz), 5.24 (t, J=8 Hz), 7.19–7.36 (m, 5H).
13
C NMR (63 MHz, CDCl ): 20.3, 20.5, 29.8, 50.1, 52.4,
3
5
8.7, 70.2, 93.9, 125.5, 127.4, 128.7, 139.2, 168.4, 171.4.
20
Mp: 115°C. [h] : +137 (c 0.68, CHCl ). Anal. calcd for
3
1
D
3
C H NO ; C, 66.42; H, 6.62; N, 4.84. Found: C, 66.37;
15 19
4
H, 6.78; N, 4.77%. IR (CHCl ) 1734, 1655, 1395, 1218,
3
−
1
1
165 cm .
2
1
1. The two diastereomers 2 (R =Me) have the same abso-
lute configurations as bicyclolactams 2a and 2b.
2. (a) Lapuyade, G.; Schlewer, G.; Wermuth, C. G. Bull.
Chem. Soc. Fr. 1986, 663; (b) Blaser, H. U.; Honig, H.;
Studer, M.; Wedemeyer-Exl, C. J. Mol. Cat. A: Chem.
1999, 253.
3
1
1
R. J. Org. Chem. 1994, 59, 3575; (k) Agami, C.; Kadouri-
Puchot, C.; Le Guen, V.; Vaissermann, J. Tetrahedron
Lett. 1995, 36, 1657; (l) Kozikowski, A. P.; Campiani, G.;