M.S. El-Deab / Electrochimica Acta 54 (2009) 3720–3725
3725
Table 2
found rich in the Au(1 1 1) facet orientation. At longer deposition
time (>60 s), the Au nanoparticle’s surface consist more Au(1 0 0)
and Au(1 1 0) with a relatively big particle size (>100 nm) and low
particle density (number of particles per unit area) as depicted from
the SEM images.
Variation of the total fraction of the (0 0 1), (1 0 1) and (1 1 1) facet domains for the
Au nanoparticles electrodeposited for various durations.
td (s)
Total fraction
0 0 1)
% of (1 1 1)
(
(1 0 1)
(1 1 1)
6
00
00
0
0.010
0.055
0.089
0.026
0.097
0.210
0.030
0.069
0.108
45
31
26
References
3
9
[1] A. Wieckowski, E.R. Savinova, C.G. Vayenas (Eds.), Catalysis and Electrocatalysis
at Nanoparticle Surfaces, Marcel Dekker, Inc., New York, 2003.
[2] G. Ozin, A. Arsenault, Nanochemistry: A Chemistry Approach to Nanomaterials,
Springer Verlag, New York, 2005.
3] M.-C. Daniel, D. Astruc, Chem. Rev. 104 (2004) 293.
[4] D.M. Kolb, F.C. Simeone, Electrochim. Acta 50 (2005 2989).
5] F.M. Bayoumi, B.G. Ateya, Electrochem. Commun. 8 (2006) 38.
6] R.E. Cavicchi, R.H. Silsbe, Phys. Rev. Lett. 52 (1984) 16.
7] P. Ball, G. Li, Nature 761 (1992) 355.
[8] R. Raj, T. Okajima, T. Ohsaka, J. Electroanal. Chem. 543 (2003) 127.
9] C.M. Welch, R.G. Compton, Anal. Bioanal. Chem. 384 (2006) 601.
10] M.S. El-Deab, T. Ohsaka, Electrochem. Commun. 4 (2002) 288.
◦
◦
of ≈38 and 64 corresponding to the Au(1 1 1) and Au(2 2 0) facet
domains of the Au nanoparticles, respectively [47]. For the present
case, the substrate is glassy carbon, which is of less ordered surface
structure and the quantitative estimation of the preferential crys-
tallographic orientation of Au nanoparticles is difficult due to the
noisy background of the XRD patterns caused by the interference
from the GC substrate.
[
[
[
[
[
[
EBSD is a powerful technique which advantageously allows
for obtaining crystallographic information (i.e., crystal orientation
mapping) of samples (e.g., particles, clusters, aggregates). Fig. 7
shows typical crystal orientation maps obtained for the same sam-
ples in Fig. 1(c–e). Note that particles of the similar orientations
are in similar colors. Black regions of the mapping image represent
areas undetected by electron backscattering due to roughness of
the GC substrate [48]. This figure reveals the following points: (i)
Au nanoparticles electrodeposited at short time (60 s, image A) are
rich in the (1 1 1) orientation (as indicated from the predominance
of the blue color) and (ii) longer electrodeposition time (≥300 s)
leads to enrichment of Au nanoparticles with the (1 0 0) and (1 1 0)
orientations as reflected from the high intensity of the red and
green colors of images B and C consistently with the observations
of the electrochemical measurements (Fig. 4). This observation
is consistent with the theoretical studies of the equilibrium and
growth forms of three-dimensional crystals, in which the growth
forms of three-dimensional crystals contain closely packed crys-
tallographic orientation (the most thermodynamically stable facet,
i.e., the (1 1 1) facet for Au) at the early stage of electrodeposition
[
11] N. Alexeyeva, T. Laaksonen, K. Kontturi, F. Mirkhalaf, D.J. Schiffrin, K. Tam-
meveski, Electrochem. Commun. 8 (2006) 1475.
[12] M. Haruta, Catal. Today 72 (1997) 63.
[13] A. Sarapuu, M. Nurmik, H. Mander, A. Rosental, T. Laaksonen, K. Kontturi, D.J.
Schiffrin, K. Tammeveski, J. Electroanal. Chem. 612 (2008) 78.
[
14] D.L. Feldheim, C.A. Foss, Metal Nanoparticles; Synthesis, Characterization and
Applications, Marcel Dekker, New York, 2002.
[
[
15] J. Rockenberger, E.C. Scher, A.P. Alivisatos, J. Am. Chem. Soc. 121 (1999) 11595.
16] Q. Song, Z.J. Zhang, J. Am. Chem. Soc. 126 (2004) 6164.
[
17] M.S. El-Deab, T. Sotomura, T. Ohsaka, J. Electrochem. Soc. 152 (2005) C1.
[18] D.-L. Lu, K.-I. Tanaka, J. Phys. Chem. 100 (1996 1833).
19] H. Huang, X. Yang, Colloids Surf. A: Physicochem. Eng. Aspects 255 (2005) 11.
20] M.O. Finot, G.D. Braybrook, M.T. McDermott, J. Electranal. Chem. 466 (1999)
34.
[21] V. Srinivasan, J.W. Weidner, J. Electrochem. Soc. 144 (1997) L210.
[
[
2
[22] H.Y. Lee, S.W. Kim, H.Y. Lee, Electrochem. Solid-State Lett. 4 (2001) A19.
[23] M.S. Hong, S.H. Lee, S.W. Kim, Electrochem. Solid-State Lett. 5 (2002) A227.
[24] J. Spatz, S. Mossmer, M. Moller, Chem. Eur. J. 2 (1996) 1552.
[25] R. Glass, M. Moller, J.P. Spatz, Nanotechnology 14 (2003) 1153.
[
26] M. Magnusson, K. Deppet, J.-O. Malm, J.-O. Bovin, L. Samuelson, Nanostruct.
Mater. 12 (1999) 45.
[27] P.J. Collier, J.A. Iggo, R. Whyman, J. Mol. Catal. A: Chem. 146 (1999) 149.
[28] M.S. El-Deab, T. Okajima, T. Ohsaka, J. Electrochem. Soc. 150 (2003) A851.
[29] L. Komsiyska, G. Staikov, Electrochim. Acta 54 (2008) 168.
[
30] M.S. El-Deab, T. Okajima, T. Ohsaka, J. Electrochem. Soc. 153 (2006) E201.
[
31] E. Budevski, G. Staikov, W.J. Lorenz, Electrochemical Phase Formation and
Growth, VCH, Weinheim, 1996 (Chapter 4).
[
31]. On the other hand, at longer electrodeposition times the per-
centage of (1 0 0) and (1 1 0) increases probably due to the more
complex mechanism of growth and coalescence of the neighbor-
ing Au nanoclusters [31]. The fractions for the (0 0 1), (1 0 1) and
[32] G. Gunawardena, G. Hills, I. Montenegro, B. Scarifker, J. Electroanal. Chem. 138
1982) 225.
(
[
[
33] M.S. El-Deab, K. Arihara, T. Ohsaka, J. Electrochem. Soc. 151 (2004) E213.
34] K. Arihara, T. Ariga, N. Takashima, K. Arihara, T. Okajima, F. Kitamura, K. Tokuda,
T. Ohsaka, Phys. Chem. Chem. Phys. 5 (2003) 3758.
(
1 1 1) orientations corresponding to the three samples are given
[
35] M.M. Walczak, C.A. Alves, B.D. Lamp, M.D. Porter, J. Electroanal. Chem. 396
in Table 2. The total fraction of a specific facet is the percentage
of a specific orientation relative to the total area of the analyzed
region of the surface [49]. This table shows that the increase of td
resulted in: (i) increase in the total fraction of the three low index
facets of Au nanoparticles and (ii) a decrease in the percent of the
(
1995) 103.
[
36] C.-J. Zhong, J. Zak, M.D. Porter, J. Electroanal. Chem. 421 (1997) 9.
[37] D.-F. Yang, C.P. Wilde, M. Morin, Langmuir 12 (1996) 6570.
[
[
[
38] S. Strbac, R. Adzic, Electrochim. Acta 41 (1996) 2903.
39] C. Paliteiro, N. Martins, Electrochim. Acta 44 (1998) 1359.
40] M.S. El-Deab, T. Sotomura, T. Ohsaka, Electrochem. Commun. 7 (2005) 29.
(1 1 1) orientation. It should be mentioned here that the analysis of
[41] F. Gao, M.S. El-Deab, T. Okajima, T. Ohsaka, J. Electrochem. Soc. 152 (2005)
A1226.
the EBSD images (given in Table 2) provided the relative percent-
age of the three low index facet orientations of the electrodeposited
Au nanoparticles and cannot be used to estimate the total surface
coverage of GC.
[
[
42] M.S. El-Deab, T. Ohsaka, Electrochim. Acta 52 (2007) 2166.
43] A. Sarapuu, K. Tammeveski, T.T. Tenno, V. Sammelselg, K. Kontturi, D.J. Schiffrin,
Electrochem. Commun. 3 (2001) 446.
[44] A. Sarapuu, K. Vaik, D.J. Schiffrin, K. Tammeveski, J. Electroanal. Chem. 541
2003) 23.
(
[
45] K. Vaik, A. Sarapuu, K. Tammeveski, F. Mirkhalaf, D.J. Schiffrin, J. Electroanal.
Chem. 564 (2004) 159.
46] W.F. McClune (Ed.), Powder Diffraction File, International Centre for Diffraction
Data (ICDD), USA, 2003.
4
. Conclusions
[
In this study, the influence of the electrodeposition time on the
[
47] T. Kinoshita, S. Seino, K. Okitsu, T. Nakayama, T. Nakagawa, T.A. Yamamoto, J.
preferential crystallographic orientation of Au nanoparticles is fol-
lowed by electrochemical and EBSD techniques. Au nanoparticles
electrodeposited at relatively short potential step width (5–60 s) are
Alloys Compd. 359 (2003) 46.
[48] K. Nogita, A.K. Dahle, Mater. Charact. 46 (2001) 305.
[49] A.K. Veneva, M.R. Koblischka, Mater. Sci. Eng. B 151 (2008) 60.