Communication
ChemComm
(ii) the oxidation of water was likely the main reaction in the anode, Marie Curie Career Integration Grants (PCIG13-GA-2013-618593).
which led to the production of O . Oxygen can permeate to the P. B.-V is supported by a project grant from the Catalan Govern-
2
cathode through the cationic exchange membrane, being subse- ment (2014 FI-B1 00119).
quently reduced to water again or used for oxidizing organic
18
compounds, with the associated consumption of electrons. Gas
Notes and references
sample analysis showed low H
0–1% v/v). On the contrary, high dissolved oxygen (DO) concentra-
2
concentrations in the headspace
(
1
M. Mikkelsen, M. Jørgensen and F. C. Krebs, Energy Environ. Sci.,
2010, 3, 43–81.
À1
2
tions (8 mgO L ) were measured in the anode compartment at
2
3
4
R. S. Haszeldine, Science, 2009, 325, 1647–1652.
the end of the experiment, revealing this second potential sink as
the main contributor to electron loses from the system.
K. Rabaey and R. A. Rozendal, Nat. Rev. Microbiol., 2010, 8, 706–716.
K. P. Nevin, T. L. Woodard, A. E. Franks, Z. M. Summers and
D. R. Lovley, mBio, 2010, 1, e00103.
Finally, it is important to consider that separation and
recovery of fermentation products, even from highly specific
pure cultures, can account for over 60% of the total production
5
6
7
8
9
C. W. Marshall, D. E. Ross, E. B. Fichot, R. S. Norman and H. D. May,
Appl. Environ. Microbiol., 2012, 78, 8412–8420.
C. W. Marshall, D. E. Ross, E. B. Fichot, R. S. Norman and H. D. May,
Environ. Sci. Technol., 2013, 47, 6023–6029.
M. Sharma, N. Aryal, P. M. Sarma, K. Vanbroekhoven, B. Lal,
X. D. Benetton and D. Pant, Chem. Commun., 2013, 49, 6495–6497.
K. J. J. Steinbusch, H. V. M. Hamelers, J. D. Schaap, C. Kampman
and C. J. N. Buisman, Environ. Sci. Technol., 2010, 44, 513–517.
M. C. A. A. Van Eerten-Jansen, A. Ter Heijne, T. I. M. Grootscholten,
K. J. J. Steinbusch, T. H. J. A. Sleutels, H. V. M. Hamelers and
C. J. N. Buisman, ACS Sustainable Chem. Eng., 2013, 1, 513–518.
1
9
costs. To date, a number of technologies have been developed
for the separation of organic acids from fermentation broths
(
both online and offline), including liquid:liquid extraction and
10
electrodialysis. Recently, Andersen and co-workers developed a
processing pipeline to transform carboxylates into fine chemicals
by combining Membrane Electrolysis (ME) and Biphasic Esterifica-
20
tion (BE). This is of special interest because MES of butyrate from 10 M. Dwidar, J.-Y. Park, R. J. Mitchell and B.-I. Sang, Sci. World J.,
2
012, 471417.
1 P. S ´a nchez, R. Ganigue, L. Ba n˜ eras and J. Colprim, Chem. Eng. J.,
014, under review.
12 J. Daniell, M. K o¨ pke and S. D. Simpson, Energies, 2012, 5, 5372–5417.
CO could be coupled to this concept, with organic acids produced
2
1
in the cathode being extracted and concentrated in the anode, prior
to esterification.
2
1
1
1
1
3 A. S. G o¨ ssner, F. Picardal, R. S. Tanner and H. L. Drake, FEMS
Microbiol. Lett., 2008, 287, 236–242.
4 R. K. Thauer, K. Jungermann, K. Decker and P. P. H. Pi, Bacteriol.
Rev., 1977, 41, 809.
5 M. T. Agler, B. A. Wrenn, S. H. Zinder and L. T. Angenent, Trends
Biotechnol., 2011, 29, 70–78.
6 P. Batlle-Vilanova, S. Puig, R. Gonzalez-Olmos, A. Vilajeliu-Pons,
This study demonstrates for the first time the bioelectro-
chemical CO
characterisation demonstrated that the CO
2
transformation to butyrate. The electrochemical
reduction to buty-
2
rate was hydrogen driven. Production of ethanol and butanol
was also observed at low pH values and high concentrations of
undissociated organic acids, opening up the potential for the
L. Ba n˜ eras, M. D. Balaguer and J. Colprim, Int. J. Hydrogen Energy,
2
014, 39, 1297–1305.
bioelectrochemical production of biofuels from CO
2
as a sole
1
7 A. W. Jeremiasse, H. V. M. Hamelers and C. J. N. Buisman, Bioelec-
carbon source. Future work should aim to increase product
trochemistry, 2010, 78, 39–43.
titers and coulombic efficiency of the system by minimising 18 M. C. A. A. Van Eerten-jansen, A. Ter Heijne, C. J. N. Buisman and
H. V. M. Hamelers, Int. J. Energy Res., 2012, 809–819.
9 I. Bechthold, K. Bretz, S. Kabasci, R. Kopitzky and A. Springer, Chem.
Eng. Technol., 2008, 31, 647–654.
anodic oxygen production and its diffusion to the cathode.
1
The authors would like to thank the Spanish Ministry (Best-
Energy, CTQ2011-23632) for its financial support in this study. 20 S. J. Andersen, T. Hennebel, S. Gildemyn, M. Coma, J. Desloover,
J. Berton, J. Tsukamoto, C. V. Stevens and K. Rabaey, Environ. Sci.
Technol., 2014, 48, 7135–7142.
1 R. S. Tanner, L. M. Miller and D. Yang, Int. J. Syst. Bacteriol., 1993,
LEQUIA has been recognised as a consolidated research group by
the Catalan Government (2014-SGR-1168). R.G. gratefully acknowl-
2
edges support from Beatriu de Pin ´o s fellowship (BP-2011-B) and FP7
43, 232–236.
3
238 | Chem. Commun., 2015, 51, 3235--3238
This journal is ©The Royal Society of Chemistry 2015