September 2011
A Facile Route to the Synthesis of BiFeO at Low Temperature
3
3063
4
J. D. Bucci, B. K. Robertson, and W. J. James, ‘‘The Precision Determination
Table I. The Relationship Between Pure BiFeO and
3
Complexing Agent
3
of the Lattice Parameters and the Coefficients of Thermal Expansion of BiFeO ,’’
J. Appl. Crystallogr., 5 [3] 187–1 (1972).
F. Kubel and H. Schmid, ‘‘Structure of a Ferroelectric and Ferroelastic Mono-
5
OH
no.
COOH
no.
Pure
domain Crystal of the Perovskite BiFeO ,’’ Acta Cryst., B46 [6] 698–2 (1990).
3
P. Wang, L. Zohu, M. F. Zhang, X. Y. Chen, J. M. Liu, and Z. G. Liu,
BiFeO
3
Reference
6
‘
Synthesized by Rapid Liquid Phase Sintering,’’ Appl. Phys. Lett., 84 [10] 1731–3
3
‘Room-Temperature Saturated Ferroelectric Polarization in BiFeO Ceramics
Glycerol
PVA
EG
3
2
1
0
0
0
O
O
O
Present work
Liu et al.
Park and colleagues
22
(2004).
1
1
7,18
9,21
7
I. Sosnowska, T. P. Neumaier, and E. Steichele, ‘‘Spiral Magnetic Ordering in
Bismuth Ferrite,’’ J. Phys. C., 15 [23] 4835–6 (1982).
P. Fischer, M. Polomska, I. Sosnowska, and M. Szymanski, ‘‘Temperature
8
Without
EG
With
EG
Dependence of the Crystal and Magnetic Structures of BiFeO
[
3
,’’ J. Phys. C., 13
10] 1931–0 (1980).
G. D. Achenbach, W. J. James, and R. Gerson, ‘‘Preparation of Single-Phase
9
Tartaric
Malic
Citric
2
1
1
0
0
0
0
2
O
O
ꢃ
ꢃ
ꢃ
ꢃ
ꢃ
O
O
O
O
ꢃ
ꢃ
?
Selbach and colleagues
Selbach et al.
Polycrystalline BiFeO ,’’ J. Am. Ceram. Soc., 50 [8] 437 (1967).
3
19
10
2
3
2
2
2
2
J. T. Han, Y. H. Huang, X. J. Wu, C. L. Wu, W. Wei, B. Peng, W. Huang, and
J. B. Goodenough, ‘‘Tunable Synthesis of Bismuth Ferrites with Various
16,20
Jiang and colleagues
w
19
Morphologies,’’ Adv. Mater., 18 [6] 2145–8 (2006).
C. M. Cho, J. H. Noh, I. S. Cho, J. S. An, K. S. Hong, and J. Y. Kim, ‘‘Low-
Maleic
Selbach et al.1
11
9
Succinic
Malonic
Oxalic
Selbach et al.1
Selbach et al.
Ghosh et al.
3
Temperature Hydrothermal Synthesis of Pure BiFeO Nanopowders Using
9
Triethanolamine and Their Applications as Visible-Light Photocatalysts,’’
J. Am. Ceram. Soc., 91 [11] 3753–5 (2008).
U. A. Joshi, J. S. Jang, P. H. Borse, and J. S. Lee, ‘‘Microwave Synthesis of
14
12
3
Single-Crystalline Perovskite BiFeO Nanocubes for Photoelectrode and Photo-
w
Contain one C 5 C. O, obtain pure BiFeO
3
; ꢃ , do not obtain pure BiFeO
3
; ?,
catalytic Applications,’’ Appl. Phys. Lett., 92, 242106 , 3pp (2008).
N. Das, R. Majumdar, A. Sen, and H. S. Maiti, ‘‘Nanosized Bismuth Ferrite
13
no report; PVA, polyvinyl alcohol; ethylene glycol; EG, ethylene glycol.
Powder Prepared Through Sonochemical and Microemulsion Techniques,’’
Mater. Lett., 61 [10] 2100–4 (2007).
14
S. Ghosh, S. Dasgupta, A. Sen, and H. S. Maiti, ‘‘Low Temperature Synthesis
of Bismuth Ferrite Nanoparticles by a Ferrioxalate Precursor Method,’’ Mater.
Res. Bull., 40 [12] 2073–9 (2005).
advantage of present method over other successful sol–gel syn-
thesis methods is less organics that are used in the preparation.
15
R. Mazumder, P. S. Devi, D. Bhattacharya, P. Choudhury, A. Sen, and M.
Raja, ‘‘Ferromagnetism in Nanoscale BiFeO ,’’ Appl. Phys. Lett., 91, 062510 , 3pp
2007).
For example, in order to obtain 1 mol BiFeO
3
via glycerol route,
1
only 92 g organics is required. For EG method, tartaric
7
3
(
21
19
22
method, malic method and PVA method, the correspond-
ing organics weight is 2640, 300, 268, and 132 g, respectively.
With EG as polymerizing agents, required organics weight be-
16
Q. H. Jiang and C. W. Nan, ‘‘Synthesis and Properties of Multiferroic La-
Modified BiFeO Ceramics,’’ J. Am. Ceram. Soc., 89 [7] 2123–7 (2006).
T.-J. Park, G. C. Papaefthymiou, A. J. Viescas, A. R. Moodenbaugh, and S. S.
Wong, ‘‘Size-Dependent Magnetic Properties of Single-Crystalline Multiferroic
BiFeO Nanoparticles,’’ Nano Lett., 7 [3] 766–2 (2007).
J. Xu, H. Ke, and D. Jia, ‘‘Low-Temperature Synthesis of BiFeO
ders Via a Sol–Gel Method,’’ J. Alloy. Compd., 472 [1–2] 473–7 (2009).
3
17
19,20
comes higher further.
Obviously, the present method has a
3
higher weight ratio of the ceramic powders to the organics.
Compared with PVA method, glycerol is liquid and the dissolu-
tion procedure is omitted, so it is more convenient.
18
3
Nanopow-
1
9
S. M. Selbach, M. Einarsrud, T. Tybell, and T. Grande, ‘‘Synthesis of BiFeO
by Wet Chemical Methods,’’ J. Am. Ceram. Soc., 90 [11] 3430–4 (2007).
M. Popa, D. Crespo, J. M. C. Moreno, S. Preda, and V. Fruth, ‘‘Synthesis and
3
20
Structural Characterization of Single-Phase BiFeO
3
Powders from a Polymeric
IV. Conclusion
Precursor,’’ J. Am. Ceram. Soc., 90 [9] 2723–7 (2007).
S. Ghosh, S. Dasgupta, A. Sen, and H. S. Maiti, ‘‘Low-Temperature Synthesis
21
A facile glycerol route was used to synthesize BiFeO
3
Pure and well-crystallized BiFeO powders were obtained at the
temperature of 4001–6001C, without any intermediate phases.
The process is simple and easy to control; furthermore, single-
3
powders.
of Nanosized Bismuth Ferrite by Soft Chemical Route,’’ J. Am. Ceram. Soc., 88 [5]
1349–2 (2005).
22
T. Liu, Y. B. Xu, and J. Y. Zhao, ‘‘Low-Temperature Synthesis of BiFeO
3
Via
PVA Sol–Gel Route,’’ J. Am. Ceram. Soc., 93 [11] 3637–41 (2010).
D. Busch and J. Bailar, ‘‘The Stereochemistry of Complex Inorganic Com-
23
phase BiFeO
organics are required.
3
can be formed at lower temperature and less
pounds. XVII. The Stereochemistry of Hexadentate Ethylenediarhinetetraacetic
Acid Complexes,’’ J. Am. Chem. Soc., 75 [18] 4574–5 (1953).
24
H. Zhang, X. Fu, S. Niu, and Q. Xin, ‘‘Synthesis and Luminescent Properties
of Nanosized YVO :Ln (Ln 5 Sm, Dy),’’ J. Alloys Compd., 457 [1–2] 61–5 (2008).
G. V. S. Rao, C. N. R. Rao, and J. R. Ferraro, ‘‘Infrared and Electronic
4
25
Acknowledgment
Spectra of Rare Earth Perovskites: Ortho-Chromites, -Manganites and -Ferrites,’’
Appl. Spectrosc., 24 [4] 436–5 (1970).
The authors wish to acknowledge the Analytical and Testing Center in Huaz-
hong University of Science and Technology for FESEM analysis.
26
W. Kaczmarek and A. Graja, ‘‘Lattice Dynamics Study of the Solid Solution
Bi1ꢂxLa ) FeO by i.r. Spectroscopy,’’ Solid State Commun., 17 [7] 851–3 (1975).
G. L. Yuan, S. W. Or, and H. L. W. Chan, ‘‘Structural Transformation and
(
x
3
27
x 3
Ferroelectric–Paraelectric Phase Transition in Bi1ꢂxLa FeO (x 5 0–0.25) Multi-
References
ferroic Ceramics,’’ J. Phys. D, 40 [4] 1196–0 (2007).
1
28
S. Shetty, V. R. Palkar, and R. Pinto, ‘‘Size Effect Study in Magnetoelectric
M. K. Singh, H. M. Jang, S. Ryu, and M. H. Jo, ‘‘Polarized Raman Scattering
Epitaxial Films with Rhombohedral R3c Symmetry,’’
Appl. Phys. Lett., 88, 042907 , 3pp (2006).
of Multiferroic BiFeO
3
BiFeO
3
System,’’ Pramana J. Phys., 58 [5–6] 1027–0 (2002).
S. V. Kalinin, M. R. Suchomel, P. K. Davies, and D. A. Bonnel, ‘‘Potential and
Impedance Imaging of Polycrystalline BiFeO Ceramics,’’ J. Am. Ceram. Soc., 85
12] 3011–7 (2002).
2
2
9
Y. Yang, J. Sun, K. Zhu, Y. Liu, and L. Wan, ‘‘Structure Properties of BiFeO
Films Studied by Micro-Raman Scattering,’’ J. Appl. Phys., 103, 093532 , 5pp (2008).
E. W. Radoslovich, M. Raupach, P. G. Slade, and R. M. Taylor, ‘‘Crystalline
3
3
[
3
30
C. T. Munoz, J. P. Rivera, A. Monnier, and H. Schmid, ‘‘Measurement of the
Cobalt, Zinc, Manganese and Iron Alkoxides of Glycerol,’’ Aust. J. Chem., 23 [10]
1963–1 (1970).
3
Quadratic Magnetoelectric Effect on Single Crystalline BiFeO ,’’ Jpn. J. Appl.
Phys., 24 [Suppl. 2] 1051–3 (1985).
&