Journal of the American Chemical Society
Page 4 of 5
REFERENCES
1
2
3
4
5
6
7
8
9
(11) (a) Bloome, K. S.; McMahen, R. L.; Alexanian, E. J. J. Am. Chem.
Soc. 2011, 133, 20146. (b) Parasram, M.; Iaroshenko, V. O.; Gevorgyan, V.
J. Am. Chem. Soc. 2014, 136, 17926. (c) Bonney, K. J.; Proutiere, F.;
Schoenebeck, F. Chem. Sci. 2013, 4, 4434.
(12) Hydro-dehalogenation of the reactants is the common side process
Pd-catalyzed and radical type reactions, see, for example references 11
and 3.
(13) For recent reviews on visible light photocatalytic reactions employ-
ing exogenous photosensitizers, see: (a) Prier, C. K.; Rankic, D. A.; Mac-
Millan, D. W. C. Chem. Rev. 2013, 113, 5322. (b) Xi, Y.; Yi, H.; Lei, A. Org.
Biomol. Chem. 2013, 11, 2387. (c) Reckenthaler, M.; Griesbeck, A. G. Adv.
Synth. Catal. 2013, 355, 2727. (d) Jeffrey, J. L.; Terrett, J. A.; MacMillan, D.
W. C. Science 2015, 349, 1532. For aryl radicals species in visible light pho-
toinduced reactions with photosensitizers, see: Kalyani, D.; McMurtrey, K.
B.; Neufeldt, S. R.; Sanford, M. S. J. Am. Chem. Soc. 2011, 133, 18566.
(14) See SI for details.
(15) (a) Diao, T.; Stahl, S. S. J. Am. Chem. Soc. 2011, 133, 14566. (b)
Nicolaou, K. C.; Gray, D. L. F.; Montagnon, T.; Harrison, S. T. Angew.
Chem., Int. Ed. 2002, 41, 996. (c) Uyanik, M.; Akakura, M.; Ishihara, K. J.
Am. Chem. Soc. 2009, 131, 251.
(16) (a) Yao, W.; Zhang, Y.; Jia, X.; Huang, Z. Angew. Chem., Int. Ed.
2014, 53, 1390. (b) Lyons, T.W.; Bezier, D.; Brookhart, M. Organometal-
lics. 2015, 34, 4058.
(17) Curran, D. P.; Xu, J. J. Am. Chem. Soc. 1996, 118, 3142.
(18) Tsunoi, S.; Ryu, I.; Okuda, T.; Tanaka, M.; Komatsu, M.; Sonoda,
N. J. Am. Chem. Soc. 1998, 120, 8692.
(19) Attempts to isolate intermediate complex 4 via reaction of Pd(0)
complexes with 1a failed, presumably due to steric hindrance of bulky silyl
tether. Therefore, the SET path is considered as more likely. See SI for
details.
(20) For examples utilizing photoinduced Pd(II) excited complexes,
see: (a) To, W.-P.; Liu, Y.; Lau, T.-C.; Che, C.-M. Chem. Eur. J. 2013, 19,
5654. (b) Ozawa, F.; Yamamoto, A.; Ikariya, T.; Grubbs, R. H. Organome-
tallics 1982, 1, 1481. (c) Wakatsuki, Y.; Yamazaki, H.; Grutsch, P. A.; San-
thanam, M.; Kutal, C. J. Am. Chem. Soc. 1985, 107, 8153.
(21) For examples of generating radical species from Pd(II) complexes,
see: (a) Kraatz, H.-B.; van der Boom, M. E.; Ben-David, Y.; Milstein, D. Isr.
J. Chem. 2001, 41, 163. (b) Seligson, A. L.; Trogler, W. C. J. Am. Chem. Soc.
1992, 114, 7085. (c) Lanci, M. P.; Remy, M. S.; Kaminsky, W.; Mayer, J.
M.; Sanford, M. S. J. Am. Chem. Soc. 2009, 131, 15618.
(22) (a) Kuo, J. L.; Hartung, J.; Han, A.; Norton, J. R. J. Am. Chem. Soc.
2015, 137, 1036. (b) Hu, Y.; Shaw, A. P.; Estes, D. P.; Norton, J. R. Chem.
Rev. 2016, DOI: 10.1021/acs.chemrev.5b00532.
(23) However, an attempt to detect intermediate 9 in stoichiometric
NMR experiment failed. See SI for details.
(24) Alternative hypothetical scenarios may include radical chain mech-
anism (see ref. 6), or electron catalysis mechanism. See, Studer, A.; Curran,
D. P. Nat. Chem. 2014, 6, 765.
(25) (a) Kefalidis, C. E.; Davi, M.; Holstein, P. M.; Clot, E.; Baudoin, O.
J. Org. Chem. 2014, 79, 1190. (b) Baudoin, O.; Herrbach, A.; Gueritte, F.
Angew. Chem., Int. Ed. 2003, 42, 5736. (c) Motti, E.; Catellani, M. Adv
Synth. Catal. 2008, 350, 565.
(26) (a) Newcomb, M.; Toy, P. H. Acc. Chem. Res. 2000, 33, 449. (b)
Baldwin, J. E. Chem. Rev. 2003, 103, 1197.
(1) For selected reviews on Pd-catalyzed reactions, see: (a) Handbook of
Organopalladium Chemistry for Organic Synthesis; Negishi, E.; John Wiley &
Sons: West Sussex, U.K., 2003. (b) In Metal-Catalyzed Cross-Coupling
Reactions, 2nd ed.; de Meijere, A.; Diederich, F.; Eds.; Wiley-VCH: Wein-
heim, Germany, 2004, 815. (c) Selander, N.; Szabó, K. J. Chem. Rev. 2011,
111, 2048. (d) Molnar, A. Chem. Rev. 2011, 111, 2251. (e) Knappke, C. E.
I.; Wangelin, A. J. Chem. Soc. Rev. 2011, 40, 4948. (f) Seechun, C. J.; Kitch-
ing, M. O.; Colacot, T. J.; Snieckus, V. Angew. Chem., Int. Ed. 2012, 51,
5062.
(2) Recently, a plethora of methods involving alkyl hybrid-Pd radical in-
termediates have been reported, most of which have led to unique reactivity
and selectivity due to the intrinsic characteristics of the hybrid intermedi-
ates. However, direct formation and utilization of aryl hybrid-Pd radical
intermediates has not been reported. For a recent review on Pd involved
radical reactions, see: (a) Liu, Q.; Dong, X.; Li, J.; Xiao, J.; Dong, Y.; Liu, H.
ACS Catal. 2015, 5, 6111. For a review on catalyzed radical reactions, see:
(b) Studer, A.; Curran, D. P. Angew. Chem., Int. Ed. 2016, 55, 58.
(3) (a) Curran, D. P.; Kim, D.; Liu, H. T.; Shen, W. J. Am Chem Soc.
1988, 110, 5900. For HAT reviews, see: (b) Majetich, G.; Wheless, K.
Tetrahedron 1995, 51, 7095. (c) Radicals in Organic Synthesis Vol. 2; Re-
naud, P.; Sibi, M.P.; Wiley-VCH: Weinheim, 2001. (d) Robertson, J.;
Pillai, J.; Lush, R. K. Chem. Soc. Rev. 2001, 30, 94. (e) Nechab, M.; Mondal,
S.; Bertrand, M. P.; Chem. Eur. J. 2014, 20, 16034.
(4) For an impressive example on photoinduced desaturation reaction
involving HAT process, see: (a) Breslow, R.; Baldwin, S.; Flechtner, T.;
Kalicky, P.; Liu, S.; Washburn, W. J. Am. Chem. Soc. 1973, 95, 3251. For
efficient desaturation reactions involving both free radical and cationic
intermediates, see: (b) Voica, A.; Mendoza, A.; Gutekunst, W.R.; Fraga,
J.O.; Baran, P.S. Nat. Chem. 2012, 4, 629. (c) Hollister, K. A.; Conner, E.
S.; Spell, M. L.; Deveaux, K.; Maneval, L.; Beal, M. W.; Ragains, J. R. Angew.
Chem., Int. Ed. 2015, 54, 7837.
(5) For desilylative oxidation of silyl ethers into carbonyl derivatives,
see: (a) Reddy, M. S.; Narender, M.; Nageswar, Y. V. D. Rao, K. R. Synthesis
2005, 5, 714. (b) Chandrasekhar, S.; Mohanty, P. K.; Takhi, M. J. Org.
Chem. 1997, 62, 2628. (c) Liu, H.-J.; Han, I.-S. Synth. Commun. 1985, 15,
759. (d) Olah, G.; Balaram Gupta, G. B. Synthesis 1980, 897.
(6) For isopropyl iodide-promoted generation of a hybrid aryl Pd-
radical complex catalyzing Kumada cross-coupling reaction, see: Mano-
likakes, G.; Knochel, P. Angew. Chem., Int. Ed. 2009, 48, 205.
(7) For 1,5-HAT of aryl radical species generated in the presence of Fe
catalyst, see: (a) Yoshikai, N.; Mieczkowski, A.; Matsumoto, A.; Ilies, L.;
Nakamura, E. J. Am. Chem. Soc. 2010, 132, 5568. For 1,5-HAT of aryl radi-
cal species generated in the presence of Ni catalyst, see: (b) Wetjes, W. C.;
Wolfe, L.C.; Waller, P. J.; Kalyani, D. Org. Lett. 2013, 15, 5986.
(8) For a review on formation of hybrid transition metal-radical alkyl
species of groups 10 - 11, see: Jahn, U. Top. Curr. Chem. 2012, 320, 323.
(9) For examples of photoinduced Cu-catalyzed transformations involv-
ing alkyl iodides, see: (a) Ratani, T. S.; Bachman, S.; Fu, G. C.; Peters, J. C.
J. Am. Chem. Soc. 2015, 137, 13902. (b) Do, H.-Q.; Bachman, S.; Bissem-
ber, A. C.; Peters, J. C.; Fu, G. C. J. Am. Chem. Soc. 2014, 136, 2162. (c)
Bissember, A. C.; Lundgren, R. J.; Creutz, S. E.; Peters, J. C.; Fu, G. C.
Angew. Chem., Int. Ed. 2013, 52, 5129. For examples of photoinduced Cu-
catalyzed multi-component and cross coupling reactions, see: (d) Sagade-
van, A.; Ragupathi, A.; Hwang, K. C. Angew. Chem., Int. Ed. 2015, 54,
13896. (e) Sagadevan, A.; Hwang, K. C. Adv. Synth. Catal. 2012, 354, 3421.
(10) For a review on UV-induced Pd-catalyzed transformations involv-
ing alkyl iodides, see: Sumino, S.; Fusano, A.; Fukuyama, T.; Ryu, I. Acc.
Chem. Res. 2014, 47, 1563.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(27) Satoh, T.; Miura, M. Top. Organomet. Chem. 2005, 14, 1.
4
ACS Paragon Plus Environment