Scheme 4 Proposed mechanism for the cycloisomerization of 1.
5 For a review on cyclopropane motifs in natural products, see: L. A.
Wessjohann, W. Brandt and T. Thiemann, Chem. Rev., 2003, 103,
1625–1648.
6 P. de Fre´mont, N. M. Scott, E. D. Stevens and S. P. Nolan,
Organometallics, 2005, 24, 2411–2418.
bicyclo[3.1.0]hexane cation VII, which could be further stabilized
via an oxonium, would produce unprecedented 4.
In summary, we have reported the formation of an unprece-
dented bicyclo[3.1.0]hexene in the cycloisomerization of 1,5-enynes,
catalyzed by (NHC)Au complexes. Moreover, we have shown that
the nature of the ligand on gold and the counterion have a
significant effect on the outcome of the reaction. Studies aimed at
improving the selectivity and understanding the mechanistic
aspects of this reaction are ongoing.§
7 E. Mainetti, V. Mourie`s, L. Fensterbank, M. Malacria and J. Marco-
Contelles, Angew. Chem., Int. Ed., 2002, 41, 2132–2135.
8 For related transformations with PtCl2, see: (a) N. Chatani, K. Kataoka
and S. Murai, J. Am. Chem. Soc., 1998, 120, 9104–9105; (b) S. Oi,
I. Tsukamoto, S. Miyano and Y. Inoue, Organometallics, 2001, 20,
3704–3709; (c) M. Me´ndez, M. P. Mun˜oz, C. Nevado, D. J. Ca´rdenas
and A. M. Echavarren, J. Am. Chem. Soc., 2001, 123, 10511–10520; (d)
A. Fu¨rstner, F. Stelzer and H. Szillat, J. Am. Chem. Soc., 2001, 123,
11863–11869; (e) Y. Harrak, C. Blaszykowski, M. Bernard, K. Cariou,
E. Mainetty, V. Mourie`s, A.-L. Dhimane, L. Fensterbank and
M. Malacria, J. Am. Chem. Soc., 2004, 126, 8656–8657; (f)
Y. Nishibayashi, M. Yoshikawa, Y. Inada, M. Hidai and S. Uemura,
J. Am. Chem. Soc., 2004, 126, 16066–16072; (g) A. Fu¨rstner,
P. W. Davies and T. Gress, J. Am. Chem. Soc., 2005, 127, 8244–8245;
(h) S. Anjum and J. Marco-Contelles, Tetrahedron, 2005, 61, 4793–4803.
9 V. Mamane, T. Gress, H. Krause and A. Fu¨rstner, J. Am. Chem. Soc.,
2004, 126, 8654–8655.
Notes and references
{ Crystal data. (C19H21NO4), M = 327.37, triclinic, space group P-1, a =
7.194(1), b = 8.756(2), c = 13.875(3) s, a = 82.241(4), b = 81.536(4), c =
80.279(4)u, V = 846.6(3) s3, T = 273(2) K, Z = 2, m = 0.090 mm21, 1018
reflections measured using a Bruker SMART 1 K CCD diffractometer, 301
unique (Rint = 0.0587), wR2 = 0.1612, R1 = 0.0668 for all data. CCDC
267108. For crystallographic data in CIF or other electronic format see
DOI: 10.1039/b602839j
§ The National Science Foundation is gratefully acknowledged for its
financial support of this work. We thank Prof. L. Cavallo (Universita` di
Salerno) for calculations on 2, 3 and 4 and Dr N. M. Scott (University of
New Orleans) for partial resolution of 49.
10 M. P. Mun˜oz, J. Adrio, J. C. Carretero and A. M. Echavarren,
Organometallics, 2005, 24, 1293–1300.
11 Similar distribution to 1 was observed; 29 : 39 : 49, 27% : 8% : 46%.
12 For reviews on NHCs and their applications in catalysis, see: (a)
D. Bourissou, O. Guerret, F. P. Gaba¨ı and G. Bertrand, Chem. Rev.,
2000, 100, 39–92; (b) S. D´ıez-Gonza´lez and S. P. Nolan, Annu. Rep.
Prog. Chem., Sect. B, 2005, 101, 171–191.
13 R. Dorta, E. D. Stevens, N. M. Scott, C. Costabile, L. Cavallo,
C. D. Hoff and S. P. Nolan, J. Am. Chem. Soc., 2005, 127, 2485–2495.
14 Probably, because in this case there is no generation of a cationic gold
complex, the acetate anion is in the coordination sphere of and tightly
bound to the gold center. For an example of (NHC)Au(OAc), see:
S. K. Schneider, W. A. Herrmann and E. Herdtwerck, Z. Anorg. Allg.
Chem., 2003, 629, 2363–2370.
1 For recent reviews on Au-catalyzed reactions, see: (a) A. Hoffmann-
Ro¨der and N. Krause, Org. Biomol. Chem., 2005, 3, 387–391; (b)
A. S. K. Hashmi, Angew. Chem., Int. Ed., 2005, 44, 6990–6993; (c)
S. Ma, S. Yu and Z. Gu, Angew. Chem., Int. Ed., 2006, 45, 200–203.
2 (a) C. Nieto-Oberhuber, M. P. Mun˜oz, E. Bun˜uel, C. Nevado, D. J.
Ca´rdenas and A. M. Echavarren, Angew. Chem., Int. Ed., 2004, 43,
2402–2406; (b) L. Zhang and S. A. Kozmin, J. Am. Chem. Soc., 2004,
126, 11806–11807; (c) M. R. Luzung, J. P. Markham and F. D. Toste, J.
Am. Chem. Soc., 2004, 126, 10858–10859; (d) A. Fu¨rstner and P. Hannen,
Chem. Commun., 2004, 2546–2547; (e) C. Nieto-Oberhuber, S. Lo´pez
and A. M. Echavarren, J. Am. Chem. Soc., 2005, 127, 6178–6179; (f)
L. Zhang, J. Am. Chem. Soc., 2005, 127, 16804–16805; (g) L. Zhang and
S. Wang, J. Am. Chem. Soc., 2006, 128, 1442–1443; (h) C. Nieto-
Oberhuber, S. Lo´pez, M. P. Mun˜oz, E. Jime´nez-Nu´n˜ez, E. Bun˜uel,
D. J. Ca´rdenas and A. M. Echavarren, Chem.–Eur. J., 2006, 12,
1694–1702; (i) C. Ferrer and A. M. Echavarren, Angew. Chem., Int. Ed.,
2006, 45, 1105–1109; (j) N. Marion, S. Die´z-Gonza´lez, P. de Fre´mont,
A. R. Noble and S. P. Nolan, Angew. Chem., Int. Ed., 2006, 45 , in press.
3 For reviews on cycloisomerization, see: (a) C. Aubert, O. Buisine and
M. Malacria, Chem. Rev., 2002, 102, 813–834; (b) A. M. Echavarren
and C. Nevado, Chem. Soc. Rev., 2004, 33, 431–436.
15 H. Schlossarczyk, W. Sieber, M. Hesse, H.-J. Hansen and H. Schmid,
Helv. Chim. Acta, 1973, 56, 875–944.
16 N. Me´zailles, L. Ricard and F. Gagosz, Org. Lett., 2005, 7, 4133–4136.
17 For details of the synthesis and characterization of several cationic
(NHC)Au complexes, see: P. de Fre´mont, E. D. Stevens, M. R. Fructos,
M. M. D´ıaz-Requejo, M. P. J. Pe´rez and S. P. Nolan, Chem. Commun.,
2006, DOI: 10.1039/b601547f.
18 An alternate pathway for the formation of 2 and 3 would involve the
formation of a bicyclo[n.1.0]platinacarbene prior to the migration of the
acetate, see: (a) E. Soriano, P. Ballesteros and J. Marco-Contelles,
Organometallics, 2005, 24, 3182–3191; (b) E. Soriano and J. Marco-
Contelles, J. Org. Chem., 2005, 70, 9345–9353; (c) A. Fu¨rstner and
P. Hannen, Chem.–Eur. J., 2006, 12, 3006–3019.
4 For a review on LTM-catalyzed formation of cyclopropane from
enynes, see: C. Bruneau, Angew. Chem., Int. Ed., 2005, 44, 2328–2334.
2050 | Chem. Commun., 2006, 2048–2050
This journal is ß The Royal Society of Chemistry 2006