ORGANIC
LETTERS
2002
Vol. 4, No. 21
3565-3568
Self-Assembly of Dendrimers by
Slippage
Arkadij M. Elizarov, Theresa Chang, Sheng-Hsien Chiu, and J. Fraser Stoddart*
Department of Chemistry and Biochemistry, UniVersity of California, Los Angeles,
405 Hilgard AVenue, Los Angeles, California 90095-1569
Received July 8, 2002
ABSTRACT
A dendrimer with rotaxane-like characteristics has been assembled under thermodynamic control from complementary wedge-shaped precursors
by slippage in CH Cl2. The driving force for the self-assembly process is the molecular recognition that exists as a result of [N+−H‚‚‚O] and
2
[C−H‚‚‚O] hydrogen bonds between an NH + center in one Fre´chet-type benzyl ether wedge and a dibenzo[24]crown-8 unit that links the other
2
two such wedges.
Although dendrimers containing mechanically interlocked
components are known,1 they are far from commonplace.
Usually, they have been prepared by template-directed
protocols wherein, at some point in the synthesis, a supra-
molecular species is formed that is then modified covalently2
to introduce either the catenane or rotaxane architecture.3
Recently, for example, we described4 the construction of a
dendrimer that contains two identical covalently linked bis-
dendrons and a core unit fused to two rings that encircle the
two bis-dendrons. In this work, the dendrons were introduced
into an already interlocked molecular compound by Wittig
chemistry5 that allows no less than four surrogate stoppers
to be replaced by dendrons. The resulting dendrimer with
its mechanical branching points is kinetically stable in
contrast with the so-called supramolecular dendrimers6 and
their assemblies7 which are subject to thermodynamic control
and are usually kinetically labile, in common with most
noncovalently bonded superstructures. An intermediate situ-
ation between mechanically interlocked molecular dendrim-
(5) Rowan, S. J.; Stoddart, J. F. J. Am. Chem. Soc. 2000, 122, 164-
165.
(1) (a) Amabilino, D. B.; Ashton, P. R.; Belohradsky, M.; Raymo, F.
M.; Stoddart, J. F. J. Chem. Soc., Chem. Commun. 1995, 751-753. (b)
Amabilino, D. B.; Ashton, P. R.; Balzani, V.; Brown, C. L.; Credi, A.;
Fre´chet, J. M. J.; Leon, J. W.; Raymo, F. M.; Spencer, N.; Stoddart, J. F.;
Venturi, M. J. Am. Chem. Soc. 1996, 118, 12012-12020. (c) Hu¨bner, G.
M.; Nachtsheim, G.; Li, Q. Y.; Seel, C.; Vo¨gtle, F. Angew. Chem., Int. Ed.
2000, 39, 1269-1272. (d) Reuter, C.; Pawlitzki, G.; Wo¨rsdo¨rfer, U.;
Plevoets, M.; Mohry, A.; Kubota, T.; Okamoto, Y.; Vo¨gtle, F. Eur. J. Org.
Chem. 2000, 3059-3067. (e) Kim, K. Chem. Soc. ReV. 2002, 31, 96-107.
(2) Fyfe, M. C. T.; Stoddart, J. F. Acc. Chem. Res. 1997, 30, 393-401.
(3) (a) Schill, G. Catenanes, Rotaxanes and Knots; Academic: New
York, 1971. (b) Molecular Catenanes, Rotaxanes and Knots; Sauvage, J.-
P., Dietrich-Buchecker, C., Eds.; VCH-Wiley: Weinheim, Germany, 1999.
(4) Elizarov, A. M.; Chiu, S.-H.; Glink, P. T.; Stoddart, J. F. Org. Lett.
2002, 4, 679-682.
(6) Supramolecular dendrimers are comprised of noncovalently bonded
subunits: (a) Zimmerman, S. C.; Zeng, F.; Reichert, D. E. C.; Kolotuchin,
S. V. Science 1996, 271, 1095-1098. (b) Emrick, T.; Fre´chet, J. M. J.
Curr. Opin. Colloid Interface Sci. 1999, 4, 15-23. (c) Percec, V.; Cho,
W.-D.; Ungar, G. J. Am. Chem. Soc. 2000, 122, 10273-10281. (d) Lee, J.
W.; Ko, Y. H.; Park, S.-H.; Yamaguchi, K.; Kim, K. Angew. Chem., Int.
Ed. 2001, 40, 746-749. (e) Zeng, F.; Zimmerman, S. C.; Kolotuchin, S.
V.; Reichert, D. E. C.; Ma, Y. Tetrahedron 2002, 58, 825-843.
(7) Noncovalently bonded aggregates wherein each component is
considered to be a dendrimer: (a) Percec, V.; Cho, W.-D.; Mosier, P. E.;
Ungar, G.; Yeardley, J. P. J. Am. Chem. Soc. 1998, 120, 11061-11070.
(b) Uppuluri, S.; Swanson, D. R.; Piehler, L. T.; Li, J.; Hagnauer, G. L.;
Tomalia, D. A. AdV. Mater. 2000, 12, 796-800. (c) Percec, V.; Cho, W.-
D.; Ungar, G.; Yeardley, D. J. P. Chem. Eur. J. 2002, 8, 2011-2025.
10.1021/ol026479c CCC: $22.00 © 2002 American Chemical Society
Published on Web 09/24/2002