Journal of the American Chemical Society
Article
values of TM in the active site of hCAII are computed to be 4.1
and 7.2 when the hydroxyl group is oriented toward the
hydrophilic and hydrophobic pockets, respectively (Figure
Notes
4
2
The authors declare no competing financial interest.
S11). Coupling these data with the observation of the two
conformations in a ∼1:1 ratio in the crystal structure
determined at pH 8 suggest that at low pH, the predominant
species of TM is protonated and oriented toward the
hydrophobic pocket (attempts to verify this crystallographically
were unsuccessful); at high pH (pH > 7.2), the deprotonated
form of TM is dominant with the ligand hydroxyl group
oriented in the hydrophilic pocket, which is likely the
conformation responsible for the observed inhibitory activity.
From the structural data acquired for TM, particularly when
compared to the analogous O,S-donor ATM, it is evident that
ACKNOWLEDGMENTS
■
J.A.M. acknowledges support from the National Institute of
Health (NIH GM31749), National Science Foundation (MCB-
020765), Howard Hughes Medical Institute, National
Biomedical Computation Resource and NSF supercomputer
centers. P.G.B. acknowledges support from the National
Institute of Health Molecular Biophysics Training Grant
1
(
2T32GM008326-21). D.L.T. acknowledges support from the
National Institutes of Health (P30-EB-009998 to the Center for
Synchrotron Biosciences from the NIBIB, which supports
beamline X3B at the NSLS) and the National Science
Foundation (CHE-1152755). S.M.C. acknowledges support
from the National Institutes of Health (R01 GM098435).
D.P.M. is supported by a SMART scholarship from the Office
of the Secretary of Defense - Test and Evaluation (N00244-09-
2+
the Zn −MBG interaction is not the sole dictator of ligand
binding. Ligand acidity is likely not a major driving force in the
change in coordination, as ATM and TM have relatively close
43
acidities (pK = 7.64 and 8.06, respectively). The DFT-
a
derived geometric and energetic analyses of TpZn(MBG)
complexes show that over the ligand orientations available to
MBGs in hCAII (|ϕ| = 90−143°), there can be a very small
energy difference between monodentate and bidentate
1
-0081).
2
+
coordination of Zn . For example, between ϕ = 125−115°,
bidentate and monodentate coordination modes for the ligands
considered in this study differ in energy by <5 kcal/mol. From
this observation, it is reasonable that the orientation of TM can,
in some circumstances, be altered by interactions with the
active site of hCAII. This finding implies that de novo or
fragment-based approaches to inhibitor development must take
care to elucidate circumstances where protein effects alter the
coordination mode of an MBG.
REFERENCES
■
(1) Andreini, C.; Bertini, I.; Cavallaro, G.; Holliday, G. L.; Thornton,
J. M. J. Biol. Inorg. Chem. 2008, 13, 1205−1218.
2) Supuran, C. T.; Winum, J.-Y. Drug Design of Zinc-Enzyme
(
Inhibitors; John Wiley & Sons, Inc.: Hoboken, NJ, 2009.
3) Martin, D. P.; Hann, Z. S.; Cohen, S. M. Inorg. Chem. 2012, 52,
2207−12215.
4) Jacobsen, F. E.; Lewis, J. A.; Cohen, S. M. ChemMedChem 2007,
, 152−171.
5) Kawai, K.; Nagata, N. Eur. J. Med. Chem. 2012, 51, 271−276.
(6) Jacobsen, J. A.; Fullagar, J. L.; Miller, M. T.; Cohen, S. M. J. Med.
Chem. 2011, 54, 591−602.
7) Serrao, E.; Odde, S.; Ramkumar, K.; Neamati, N. Retrovirology
009, 6, 25.
8) Saito, A.; Yamashita, T.; Mariko, Y.; Nosaka, Y.; Tsuchiya, K.;
Ando, T.; Suzuki, T.; Tsuruo, T.; Nakanishi, O. Proc. Nat. Acad. Sci.
U.S.A. 1999, 96, 4592−4597.
9) Johns, B. A.; Kawasuji, T.; Weatherhead, J. G.; Taishi, T.;
Temelkoff, D. P.; Yoshida, H.; Akiyama, T.; Taoda, Y.; Murai, H.;
Kiyama, R.; Fuji, M.; Tanimoto, N.; Jeffrey, J.; Foster, S. A.; Yoshinaga,
T.; Seki, T.; Kobayashi, M.; Sato, A.; Johnson, M. N.; Garvey, E. P.;
Fujiwara, T. J. Med. Chem. 2013, 56, 5901−5916.
(10) Looney, A.; Parkin, G.; Alsfasser, R.; Ruf, M.; Vahrenkamp, H.
Angew. Chem., Int. Ed. 1992, 31, 92−93.
11) Looney, A.; Han, R.; McNeill, K.; Parkin, G. J. Am. Chem. Soc.
(
1
(
2
(
CONCLUSION
■
The rational design of metalloprotein inhibitors requires
knowledge as to how those inhibitors coordinate the active
site metal ion. While small molecule model complexes have
been used as proxies for coordination in enzyme active sites, the
results presented here demonstrate that the active site
environment can have a significant effect on the metal−ligand
interaction; in cases where structural data is not available, care
must be taken in the assumptions made about metal-inhibitor
interaction. In the case of hCAII, the steric restrictions of the
active site force ligands to bind in conformations far from ideal
head-on binding, drastically decreasing the strength of metal
coordination. Other interactions, including hydrogen bonding
and hydrophobic contacts, can influence the binding mode of
the MBG, leading to coordination modes not observed in
conventional coordination chemistry. Studies are underway to
further understand the role of metal coordination in the
binding of metalloprotein inhibitors and how binding is
influenced by other interactions within the active site.
(
2
(
(
(
1
(
(
993, 115, 4690−4697.
12) Parkin, G. Chem. Rev. 2004, 104, 699−767.
13) Puerta, D. T.; Cohen, S. M. Inorg. Chem. 2002, 41, 5075−5082.
(
14) Puerta, D. T.; Schames, J. R.; Henchman, R. H.; McCammon, J.
A.; Cohen, S. M. Angew. Chem., Int. Ed. 2003, 42, 3772−3774.
15) Puerta, D. T.; Lewis, J. A.; Cohen, S. M. J. Am. Chem. Soc. 2004,
26, 8388−8389.
16) Jacobsen, F. E.; Breece, R. M.; Myers, W. K.; Tierney, D. L.;
Cohen, S. M. Inorg. Chem. 2006, 45, 7306−7315.
17) Cho, J. H.; Kim, D. H.; Chung, S. J.; Ha, N.-C.; Oh, B.-H.; Choi,
K. Y. Bioorg. Med. Chem. 2002, 10, 2015−2022.
18) Gaucher, J. F.; Selkti, M.; Tiraboschi, G.; Prange,
P.; Tomas, A.; Fournie-Zaluski, M. C. Biochemistry 1999, 38, 12569−
2576.
19) Supuran, C. T.; Scozzafava, A.; Casini, A. Med. Res. Rev. 2003,
3, 146−189.
(20) Krishnamurthy, V. M.; Kaufman, G. K.; Urbach, A. R.; Gitlin, I.;
(
1
(
ASSOCIATED CONTENT
Supporting Information
■
*
S
(
Full experimental details for ligand synthesis, protein expression
and purification, crystal structure collection details and
refinement statistics, and complete computational procedures.
(
́
T.; Roques, B.
́
1
(
2
AUTHOR INFORMATION
Gudiksen, K. L.; Weibel, D. B.; Whitesides, G. M. Chem. Rev. 2008,
108, 946−1051.
5
405
dx.doi.org/10.1021/ja500616m | J. Am. Chem. Soc. 2014, 136, 5400−5406