1
238
V. J. Dungan et al. / Tetrahedron Letters 54 (2013) 1236–1238
O
OH
III
8
17
e
nF
L
II
e
nF
L
1
8
11
OH
OH
H
O
HOO HOOH
14
or
HOO
8
17
1
3
O
L
O
OH
O
n
F
e
III
O
-
H O
2
Ln
F
e
II
+
+ O
2
19
12
19
11
12
Å
Å
Scheme 3. Potential routes for formation of 11, 12 and 13 from cyclohexene 8: Abstraction of H from 8 by the hydroperoxy radical OOH would give 17, which could be
converted into hydroperoxide 13 by either a second hydroperoxy radical or complex 14. Redox conversion of 13 into 11 and 12 could proceed via intermediates 18 and 19,
37,38
with the iron complex functioning to decompose the hydroperoxide as observed by Gray and co-workers with porphyrin and salen complexes of iron.
ketone 12 may also arise from 13 via elimination of water.
Alternatively
3
9,40
cyclohexene to the alcohol 11, ketone 12 and hydroperoxide 13
products observed, via intermediates 17–19 (Scheme 3).
In conclusion, the iron(II) triflate complexes of non-haem li-
gands 4–6 catalyse high levels of oxidative turnover of cyclohexene
18. A new route to compound 4 was developed starting from pyridine-2,6-
dicarboxylic acid. Our previous synthesis starting from pyridine–2,6-
dimethanol is more direct (two steps vs five to the key bromide
intermediate), but the overall yields of that intermediate are almost identical
(43.7% vs 43.1%) and the diacid starting material is significantly cheaper than
the diol. For more details see the Supplementary data.
8
into the alcohol 11, ketone 12 and hydroperoxide 13 in acetoni-
19. Gosiewska, S.; Cornelissen, J. J. L. M.; Lutz, M.; Spek, A. L.; van Koten, G.; Klein
Å
trile solutions. We propose that the hydroperoxy radical OOH is
the primary oxidant and that hydroperoxide 13 is a common inter-
mediate in the formation of 11 and 12. Further work (including ki-
netic studies, spectroscopic characterisation of intermediates and
Gebbink, R. J. M. Inorg. Chem. 2006, 45, 4214–4227.
20. Gosiewska, S.; Permentier, H. P.; Bruins, A. P.; Koten, G. V.; Klein Gebbink, R. J.
M. Dalton Trans. 2007, 3365–3368.
21. Rohde, J. U.; In, J. H.; Lim, M. H.; Brennessel, W. W.; Bukowski, M. R.; Stubna, A.;
Munck, E.; Nam, W.; Que, L. Science 2003, 299, 1037–1039.
22. Martinho, M.; Blain, G.; Banse, F. Dalton Trans. 2010, 39, 1630–1634.
1
8
experiments with H
2
O
2
) is required to confirm this proposal
23. Lee, Y.-M.; Hong, S.; Morimoto, Y.; Shin, W.; Fukuzumi, S.; Nam, W. J. Am. Chem.
Soc. 2010, 132, 10668–10670.
and to fully elucidate the mechanism of these transformations.
2
4. Sawyer, D. T.; Sobkowiak, A.; Matsushita, T. Acc. Chem. Res. 1996, 29, 409–416.
Acknowledgment
25. Representative turnover procedure: iron(II) triflate (31 mg, 0.07 mmol) was
dissolved in degassed, dry MeOH (1.2 mL). A portion (0.2 mL) of this solution
was added via cannula to a solution of ligand (4 mg, 0.01 mmol) in MeOH
This work was supported by a Bridging Support Grant from the
University of Sydney.
(
0.2 mL) under argon. The resultant orange solution was stirred for 1 h at room
temperature under an atmosphere of argon, after which time the MeOH was
removed under vacuum to give the resulting complex as a brown oil. This oil
was redissolved in MeCN (10 mL) and cyclohexene (1.01 mL, 10 mmol) was
Supplementary data
2 2 2
added. H O (30% solution in H O, 13 lL, 0.1 mmol) in MeCN (1 mL) was added
over 30 min via syringe pump. The solution was stirred at room temperature
under argon for 16 h, then concentrated in vacuo, diluted with EtOAc and
passed through a short silica column. Decane was added as an internal
standard and the products were analysed by gas chromatography.
2.095. These data include MOL files and InChiKeys of the most
26. Samples were analysed on a Hewlett-Packard 5890 Series II gas chromatograph
using an HP-1 ms column (30 m  0.25 mm ID, 0.25
and Hewlett-Packard 5890A gas chromatograph with
25 m  0.22 mm ID, 0.25 m), each equipped with a split/splitless capillary
l
m; S/N US2469051H)
important compounds described in this article.
a
a
BP-20 column
(
l
References and notes
inlet and a flame ionisation detector (FID) and controlled using ChemStation
software. Products were identified unambiguously by comparison and spiking
with authentic samples.
1.
2.
3.
White, M. C. Science 2012, 335, 807–809.
Newhouse, T.; Baran, P. S. Angew. Chem., Int. Ed. 2011, 50, 3362–3374.
Wencel-Delord, J.; Droge, T.; Liu, F.; Glorius, F. Chem. Soc. Rev. 2011, 40, 4740–
27. Schuchardt, U.; Guerreiro, M. C.; Shul’pin, G. B. Russ. Chem. Bull. 1998, 47, 247–
252.
28. Shul’pin, G. B.; Kozlov, Y. N.; Kholuiskaya, S. N.; Plieva, M. I. J. Mol. Catal. A:
Chem. 2009, 299, 77–87.
29. Prasetyanto, E. A.; Park, S.-E. Bull. Korean Chem. Soc. 2008, 29, 1033–1037.
30. Wang, R.-M.; Duan, Z.-F.; He, Y.-F.; Lei, Z.-Q. J. Mol. Catal. A: Chem. 2006, 260,
280–287.
31. Maldotti, A.; Andreotti, L.; Molinari, A.; Borisov, S.; Vasil’ev, V. Chem. Eur. J.
2001, 7, 3564–3571.
32. Carvalho, N. M. F.; Horn, A., Jr; Antunes, O. A. C. Appl. Catal., A 2006, 305, 140–
145.
33. Retcher, B.; Costa, J. S.; Tang, J.; Hage, R.; Gamez, P.; Reedijk, J. J. Mol. Catal. A:
Chem. 2008, 286, 1–5.
34. Costas, M.; Chen, K.; Que, L. Coord. Chem. Rev. 2000, 200–202, 517–544.
35. CRC Handbook of Chemistry and Physics 92nd Edition (Internet Version 2012);
Haynes, W. M., Ed.; CRC Press/Taylor and Francis: Boca Raton, FL, 2012.
36. Blanksby, S. J.; Ellison, G. B. Acc. Chem. Res. 2003, 36, 255–263.
37. Grinstaff, M.; Hill, M.; Labinger, J.; Gray, H. Science 1994, 264, 1311–1313.
38. Böttcher, A.; Grinstaff, M. W.; Labinger, J. A.; Gray, H. B. J. Mol. Catal. A: Chem.
1996, 113, 191–200.
4
761.
4.
5.
6.
7.
Sun, C.-L.; Li, B.-J.; Shi, Z.-J. Chem. Rev. 2011, 111, 1293–1314.
Costas, M.; Mehn, M. P.; Jensen, M. P.; Que, L. Chem. Rev. 2004, 104, 939–986.
Que, L.; Tolman, W. B. Nature 2008, 455, 333–340.
Bruijnincx, P. C. A.; van Koten, G.; Klein Gebbink, R. J. M. Chem. Soc. Rev. 2008,
37, 2716–2744.
8
.
Rabe, V.; Frey, W.; Baro, A.; Laschat, S.; Bauer, M.; Bertagnolli, H.; Rajagopalan,
S.; Asthalter, T.; Roduner, E.; Dilger, H.; Glaser, T.; Schnieders, D. Eur. J. Inorg.
Chem. 2009, 4660–4674.
9
.
Kim, C.; Chen, K.; Kim, J.; Que, L. J. Am. Chem. Soc. 1997, 119, 5964–5965.
1
0. Prat, I.; Mathieson, J. S.; Güell, M.; Ribas, X.; Luis, J. M.; Cronin, L.; Costas, M.
Nature Chem. 2011, 3, 788–793.
1
1. Company, A.; Gómez, L.; Güell, M.; Ribas, X.; Luis, J. M.; Que, L.; Costas, M. J. Am.
Chem. Soc. 2007, 129, 15766–15767.
1
1
1
1
2. Chen, M. S.; White, M. C. Science 2007, 318, 783–787.
3. Krall, J. A.; Rutledge, P. J.; Baldwin, J. E. Tetrahedron 2005, 61, 137–143.
4. Barry, S. M.; Rutledge, P. J. Synlett 2008, 2172–2174.
5. Dungan, V. J.; Ortin, Y.; Mueller-Bunz, H.; Rutledge, P. J. Org. Biomol. Chem.
2
010, 8, 1666–1673.
6. Dungan, V. J.; Wong, S.-M.; Barry, S. M.; Rutledge, P. J. Tetrahedron 2012, 68,
231–3236.
7. Barry, S. M.; Mueller-Bunz, H.; Rutledge, P. J. Org. Biomol. Chem. 2012, 10, 7372–
381.
39. Nagahara, H.; Mori, S.; Nakagawa, K. U.S. Patent JP04054148A; Chem. Abstr.
1992, 116, 255237.
40. Goodman, R. M.; Kishi, Y. J. Am. Chem. Soc. 1998, 120, 9392–9393.
1
1
3
7