RSC Advances
Paper
using BMPO as a spin trap (Fig. S7b†). Thus, the catalytic
behavior of Ru NPs can not be assumed to the cOH generation.
It is very likely that Ru NPs act as an efficient electron transfer
intermediate and facilitate the electron transfer between
4 T. Matsuo, A. Hayashi, M. Abe, T. Matsuda, Y. Hisaeda and
T. Hayashi, J. Am. Chem. Soc., 2009, 131, 15124–15125.
5 Y. Xianyu, Y. Chen and X. Jiang, Anal. Chem., 2015, 87,
10688–10692.
substrates and H
surface of Ru NPs and donated electrons to Ru NPs, resulting in
increased of electron density on Ru NPs. Then the electrons
transferred from Ru NPs to H O or O and facilitated the
2 2 2
oxidation of substrates. This assumption is supported by ESR
2
O
2
or O
2
. Substrates were absorbed onto the
6 Y. Lin, J. Ren and X. Qu, Acc. Chem. Res., 2014, 47, 1097–1105.
7 Y. Lin, J. Ren and X. Qu, Adv. Mater., 2014, 26, 4200–4217.
8 W. He, W. Wamer, Q. Xia, J.-J. Yin and P. P. Fu, J. Environ. Sci.
Health, Part A: Toxic/Hazard. Subst. Environ. Eng., 2014, 32,
186–211.
measurements using CPH as a spin probe, which is oen used
9 J. Huang, L. Lin, D. Sun, H. Chen, D. Yang and Q. Li, Chem.
Soc. Rev., 2015, 44, 6330–6374.
58,59
in ESR studies of electron transfer in biological system.
CPH
is an ESR silent probe, and can be oxidized to form CP-nitroxide 10 L. Gao, M. Liu, G. Ma, Y. Wang, L. Zhao, Q. Yuan, F. Gao,
radicals (CPc) with a typical ESR spectrum of three lines with
intensity ratios of 1 : 1 : 1. As shown in Fig. 7a, CPH itself is ESR
R. Liu, J. Zhai, Z. Chai, Y. Zhao and X. Gao, ACS Nano,
2015, 9, 10979–10990.
silent. Upon addition of Ru NPs, a triplet ESR signal appeared 11 Y. Liu, D. L. Purich, C. Wu, Y. Wu, T. Chen, C. Cui, L. Zhang,
with hyperne splitting constant a
oxidation of CPH. The signal intensity increased in a time and
dose-dependent manner (Fig. 7b).
N
¼ 16.2 G, implying of the
S. Cansiz, W. Hou, Y. Wang, S. Yang and W. Tan, J. Am.
Chem. Soc., 2015, 137, 14952–14958.
12 C.-P. Liu, T.-H. Wu, Y.-L. Lin, C.-Y. Liu, S. Wang and S.-Y. Lin,
Small, 2016, 12, 4127–4135.
1
3 Y. Hu, H. Cheng, X. Zhao, J. Wu, F. Muhammad, S. Lin, J. He,
L. Zhou, C. Zhang, Y. Deng, P. Wang, Z. Zhou, S. Nie and
H. Wei, ACS Nano, 2017, 11, 5558–5566.
Conclusions
In summary, this study has introduced Ru NPs mimicking HRP
and oxidase functionalities. Ru NPs could catalyze the oxidation 14 L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang, N. Gu, T. Wang,
of substrate TMB, OPD and DA in the presence of H
produce the color products. We also report for the rst time that
2
O
2
to
J. Feng, D. Yang, S. Perrett and X. Yan, Nat. Nanotechnol.,
2007, 2, 577–583.
Ru NPs possess intrinsic oxidase-like activity, which could 15 X. Yan, Y. Song, X. Wu, C. Zhu, X. Su, D. Du and Y. Lin,
catalyze the oxidization of TMB and NaA by dissolved molecular Nanoscale, 2017, 9, 2317–2323.
oxygen. The HRP-like and oxidase-like activities of Ru NPs were 16 H. Jia, D. Yang, X. Han, J. Cai, H. Liu and W. He, Nanoscale,
found to be relevant to the concentrations of Ru NPs. The 2016, 8, 5938–5945.
enzyme mimicking activities of the Ru NPs might originate 17 W. Zhang, S. Hu, J.-J. Yin, W. He, W. Lu, M. Ma, N. Gu and
from their characteristic of accelerating electron transfer Y. Zhang, J. Am. Chem. Soc., 2016, 138, 5860–5865.
between substrates and H or O . Our ndings offer a better 18 T. Naganuma, Nano Res., 2017, 10, 199–217.
understanding of enzyme-mimicking activities of Ru NPs and 19 A. A. Vernekar, D. Sinha, S. Srivastava, P. U. Paramasivam,
2
O
2
2
should provide important insights for future applications.
P. D'Silva and G. Mugesh, Nat. Commun., 2014, 5, 5301.
0 S. Wang, R. Cazelles, W.-C. Liao, M. V ´a zquez-Gonz ´a lez,
A. Zoabi, R. Abu-Reziq and I. Willner, Nano Lett., 2017, 17,
2
Conflicts of interest
2043–2048.
There are no conicts of interest to declare.
21 M. V ´a zquez-Gonz ´a lez, W.-C. Liao, R. Cazelles, S. Wang, X. Yu,
V. Gutkin and I. Willner, ACS Nano, 2017, 11, 3247–3253.
2
2 A. M. Fracaroli, P. Siman, D. A. Nagib, M. Suzuki,
H. Furukawa, F. D. Toste and O. M. Yaghi, J. Am. Chem.
Soc., 2016, 138, 8352–8355.
Acknowledgements
G.-J. Cao appreciates the National Natural Science Foundation
of China (Grant No. 21601035) and Natural Science Foundation 23 S. Singh, K. Mitra, A. Shukla, R. Singh, R. K. Gundampati,
of Fujian Province (Grant No. 2016J01043) for partial support.
N. Misra, P. Maiti and B. Ray, Anal. Chem., 2017, 89, 783–791.
This work was also supported by a regulatory science grant 24 Y. Wang, Y. Zhu, A. Binyam, M. Liu, Y. Wu and F. Li, Biosens.
under the FDA Nanotechnology CORES Program. This paper is Bioelectron., 2016, 86, 432–438.
not an official U.S. FDA guidance or policy statement. No official 25 H.-H. Zeng, W.-B. Qiu, L. Zhang, R.-P. Liang and J.-D. Qiu,
support or endorsement by the U.S. FDA is intended or should
be inferred.
Anal. Chem., 2016, 88, 6342–6348.
26 H. Yang, J. Xiao, L. Su, T. Feng, Q. Lv and X. Zhang, Chem.
Commun., 2017, 53, 3882–3885.
2
7 S. Zhang, D. Zhang, X. Zhang, D. Shang, Z. Xue, D. Shan and
X. Lu, Anal. Chem., 2017, 89, 3538–3544.
Notes and references
1
2
3
S. J. Benkovic and S. Hammes-Schiffer, Science, 2003, 301, 28 L. Jiang, S. Fernandez-Garcia, M. Tinoco, Z. Yan, Q. Xue,
1
196–1202.
S. J. Benkovic and S. Hammes-Schiffer, Science, 2006, 312,
08–209.
J. Barber, Chem. Soc. Rev., 2009, 38, 185–196.
G. Blanco, J. J. Calvino, A. B. Hungria and X. Chen, ACS
Appl. Mater. Interfaces, 2017, 9, 18595–18608.
2
29 K. Wang, N. Li, J. Zhang, Z. Zhang and F. Dang, Biosens.
Bioelectron., 2017, 87, 339–344.
52216 | RSC Adv., 2017, 7, 52210–52217
This journal is © The Royal Society of Chemistry 2017