384
Vol. 55, No. 3
ules (MeOH); [a]D22 ꢁ58° (cꢅ0.1, MeOH); mp 186—187 °C.
Experimental
Chemicals L-(ꢃ)-Ascorbic acid, thiobarbituric acid (TBA), and ethyl-
enediamine tetraacetic acid (EDTA) were purchased from Sigma Chemical
Co. (St. Louis, MO, U.S.A.). Trolox and ferrous chloride were obtained from
Wako Pure Chemical Industries (Osaka, Japan). 2,2-Diphenyl-1-picrylhy-
drazyl (DPPH) was obtained from MP Biomedicals Inc. (Eschwege, Ger-
many). All other chemicals used were of analytical grade.
Plant Material The heartwood of R. nakaharai was collected from
Yang-Ming Shan, Taipei, Taiwan. After confirming the authenticity of the
species, a voucher specimen was deposited in the herbarium (T89-Rh-001)
of Tajen University, Pingtung, Taiwan.
Analytical Apparatus Melting points were determined by an Elec-
trothermal IA9100 melting point apparatus (ESSLAB, Essex, U.K.). 1H-
NMR (400 MHz) and 13C-NMR (100 MHz) spectra were recorded on a Var-
ian Mercury-400 (400 MHz; Varian Inc., CA, U.S.A.) spectrometer whereas
the EI-MS was taken on a TurboMass mass spectrometer and FAB-MS on a
JMS-HX 110 mass spectrometer (Perkin Elmer Inc., MA, U.S.A.). Optical
specific rotation was measured by Jasco model DIP-370 Digital Polarimeter
(JASCO Inc, MD, U.S.A.).
6-Methoxysorigenin-8-O-rutinoside 5: Brownish needles (pyridine–
MeOH); mp 257 °C.
DPPH Radical-Scavenging Activity DPPH radical-scavenging activity
was determined according to the methods of Blois21) and Chang et al.22)
Metal Chelating Activity The chelation of ferrous ions by various
compounds was estimated by the method of Dinis et al.23) with slight modifi-
cations.
Anti-lipid Peroxidation Assay The effect of 6-methoxysorigenin and
its derivatives on FeCl2-ascorbic acid-induced lipid peroxidation in rat liver
homogenate was determined by the methods of Janero12) and Lu et al.13)
Electron Spin Resonance (ESR) Spectrometry ESR assay was used
further to confirm the antioxidant activity of compound 2. The experimental
procedure was conducted according to the method as described by Kohno et
al.24)
Acknowledgements The authors would like to thank the National Sci-
ence Council for providing financial support for this study (NSC89-2314-B-
127-001), and Mr. B. L. Hua and Mr. C. H. Chen for collecting the plant ma-
terials.
Extraction and Isolation The wood was dried and chipped into small
pieces followed by weighing about 5 kg for extraction. This was extracted
with 10 l of methanol at room temperature for 1 week. The methanolic ex-
tract was condensed to obtain a residue of 186 g. This residue was chro-
matographed on a silica gel (900 g, 70—230#, Merck, Germany) column
and eluted with a solvent system of CH2Cl2–MeOH. The elution began with
CH2Cl2 (1500 ml) then with CH2Cl2 : MeOH (9 : 1; 2000 ml), followed by
CH2Cl2 : MeOH (8 : 1; 2000 ml) to obtain 6-methoxysorigenin-8-O-gluco-
side (3, 2.1 g). After discarding the solution obtained with CH2Cl2 : MeOH
(8 : 1—6 : 1; each 1500 ml), elution with CH2Cl2 : MeOH (4 : 1; 2500 ml) was
performed to obtain 6-methoxysorinin (4, 4.2 g). The same solution of 4 was
further analyzed with RP-18 TLC to obtain another blue-fluorescing spot
with Rf 0.56, which was close to that of 4. Hence it was further chro-
matographed on a 25ꢄ600-mm RP-18 column (60 mm, Merck, Germany).
Elution with 60% MeOH–H2O solvent system 250 ml led to the isolation of
6-methoxysorigenin 8-O-rutinoside (5, 87 mg). Structure determination of 3,
4, and 5 was characterized by spectrometric analyses and further confirmed
with the reported data.18,19) Compound 2 was obtained from acid hydrolysis
of the glycoside 3. The preparation of acylates (2a, 2b) was achieved by
treating 2 with pyridine and related acid anhydrides.
Characterization of Compounds 2, 2a, 2b 6-Methoxysorigenin 2:
Brownish powders (CHCl3–MeOH); mp ꢀ300 °C; 1H-NMR (400 MHz,
pyridine-d5): d 3.71 (3H, s, OCH3), 5.07 (2H, s, g-lactonic CH2), 6.58 (1H,
s, H-4), 6.63 (1H, d, Jꢅ2.0 Hz, H-7), 6.68 (1H, d, Jꢅ2.0 Hz, H-5), 14.50
(1H, br, OH), 15.10 (1H, br, OH); 13C-NMR (100 MHz, pyridine-d5): d
172.2 (C-1), 113.7 (C-2), 144.0 (C-3), 103.1 (C-4), 98.1 (C-5), 164.5 (C-6),
98.3 (C-7), 162.5 (C-8), 102.8 (C-9), 143.4 (C-10), 176.6 (g-lactonic CꢅO),
70.2 (g-lactonic CH2), 55.0 (OCH3); EI-MS m/z: 246 [M]ꢃ, 217 (base peak).
6-Methoxysorigenin Peracetate 2a: Colorless needles (CHCl3–MeOH);
mp 244 °C; 1H-NMR (400 MHz, CDCl3): d 2.41, 2.45 (each 3H, s, COCH3),
3.95 (3H, s, OCH3), 5.52 (2H, s, g-lactonic CH2), 7.13 (1H, d, Jꢅ2.4 Hz, H-
7), 7.50 (1H, d, Jꢅ2.4 Hz, H-5), 7.97 (1H, s, H-4); EI-MS m/z: 330 [M]ꢃ,
288 [Mꢁ42]ꢃ, 246 [Mꢁ84]ꢃ (base peak).
References
1) Slater T. F., Biochem. J., 222, 1—15 (1984).
2) Cheng H. Y., Lin T. C., Yu K. H., Yang C. M., Lin C. C., Biol. Pharm.
Bull., 26, 1331—1335 (2003).
3) Cuzzocrea S., Riley D. P., Caputi A. P., Salvemini D., Pharmacol. Rev.,
53, 135—159 (2001).
4) Gilgun-Sherki Y., Rosenbaum Z., Melamed E., Offen D., Pharmacol.
Rev., 54, 271—284 (2002).
5) Ko W. C., Chen M. C., Wang S. H., Lai Y. H., Chen J. H., Lin C. N.,
Planta Med., 69, 310—315 (2003).
6) Ko W. C., Wang H. L., Lei C. B., Shih C. H., Chung M. I., Lin C. N.,
Planta Med., 68, 30—35 (2002).
7) Hsiao G., Ko F. N., Lin C. N., Teng C. M., Biochem. Biophys. Acta,
1298, 119—130 (1996).
8) Lin C. N., Lu C. M., Lin H. C., Ko F. N., Teng C. M., J. Nat. Prod., 58,
1934—1940 (1995).
9) Rauwald H. W., Just H. D., Arch. Pharm., 316, 399—408 (1983).
10) Soares J. R., Dins T. C. P., Cunha A. P., Ameida L. M., Free Rad. Res.,
26, 469—478 (1997).
11) Gordon M. H., “Food Antioxidants,” ed. by Hudson B. J. F., Elsevier,
London, New York, 1990, pp. 1—18.
12) Janero D. R., Free Rad. Biol. Med., 9, 515—540 (1990).
13) Lu C. M., Yang J. J., Wang P. Y., Lin C. C., Planta Med., 66, 374—377
(2000).
14) Noda Y., Kohno M., Mori A., Packer L., Methods Enzymol., 299, 28—
34 (1999).
15) Lin C. C., Chen Y. L., Lin J. M., Ujiie T., Am. J. Chin. Med., 24, 153—
161 (1997).
16) Wiseman H., Cannon M., Arnstein H. R. V., Halliwell B., FEBS Lett.,
274, 107—110 (1990).
17) Evans W. C., “Phenols and Phenolic Glycosides,” 15th ed., Chap. 22,
Harcourt Press, Edinburgh, 2002, pp. 229—244.
18) Lin C. N., Wei B. L., J. Nat. Prod., 57, 294—297 (1994).
19) Coskun M., Tanker N., Sakushima A., Kitagawa S., Nishibe S., Phyto-
chemistry, 23, 1485—1487 (1984).
20) Kalinowski D. S., Richardson D. R., Pharmacol. Rev., 57, 547—583
(2005).
21) Blois M. S., Nature (London), 26, 199—200 (1958).
22) Chang W. C., Lee E. L., Ng L. T., Tajen J., 28, 17—36 (2006).
23) Dinis T. C. P., Madeira V. C. M., Almeida L. M., Arch. Biochem. Bio-
phys., 315, 161—169 (1994).
6-Methoxysorigenin Perpropionate 2b: Colorless masses (CHCl3–
1
MeOH); mp 189 °C; H-NMR (400 MHz, CDCl3): d 1.33, 1.35 (each 3H, t,
Jꢅ7.6 Hz, propionate CH3), 2.69 (2H, m, propionate CH2), 2.82 (2H, br,
propionate CH2), 3.89 (3H, s, OMe), 5.18 (2H, s, g-lactonic CH2), 6.86 (1H,
d, Jꢅ2.4 Hz, H-7), 6.97 (1H, d, Jꢅ2.4 Hz, H-5), 7.46 (1H, s, H-4); 13C-NMR
(100 MHz, CDCl3): d 9.0, 9.2 (propionate CH3), 27.7, 27.8 (propionate
CH2), 56.0 (OMe), 68.7 (g-lactonic CH2), 104.9 (C-7), 113.3 (C-9), 114.8
(C-5), 117.1 (C-2), 117.7 (C-4), 141.6 (C-3), 142.1 (C-10), 146.1 (C-8),
148.4 (C-1), 159.9 (C-6), 168.3 (g-lactonic CꢅO), 172.7, 173.1 (propionate
CꢅO); EI-MS m/z: 358 [M]ꢃ, 302 [MꢁC2H5COꢃ1]ꢃ, 246 [aglycone]ꢃ.
6-Methoxysorigenin-8-O-glucopyranoside 3: Brownish granules (CH2Cl2–
MeOH); mp 223 °C.
24) Kohno M., Yamada M., Mitsura K., Mizuta Y., Yoshikawa T., Bull.
Chem. Soc. Jpn., 64, 1447—1452 (1991).
6-Methoxysorigenin-8-O-premeveroside (a-Sorinin) 4: Brownish gran-