Chemistry & Biology
Alternative Quinone Formation for Actinorhodin
SUPPLEMENTAL DATA
Huang, J., Lih, C.J., Pan, K.H., and Cohen, S.N. (2001). Global analysis of
growth phase responsive gene expression and regulation antibiotic biosyn-
thetic pathways in Streptomyces coelicolor using DNA microarrays. Genes
Dev. 15, 3183–3192.
Ichinose, K., Bedford, D.J., Tornus, D., Bechthold, A., Bibb, M.J., Revill, W.P.,
Floss, H.G., and Hopwood, D.A. (1998a). The granaticin biosynthetic gene
cluster of Streptomyces violaceoruber T u¨ 22: sequence analysis and expres-
sion in a heterologous host. Chem. Biol. 5, 647–659.
ACKNOWLEDGMENTS
We thank Yutaka Ebizuka for valuable discussion and David A. Hopwood for
critical reading of the manuscript. Junya Ochiai is acknowledged for his
technical assistance. The authors are grateful for funding to the Effective
Promotion of Joint Research of Special Coordination Funds (to K.O.), Grant-
in-Aid for Young Scientists from the Ministry of Education, Culture, Sports,
Science and Technology (MEXT) (18710189 to T.T.), and Grant-in-Aid for
Scientific Research from the Japan Society for the Promotion of Science
Ichinose, K., Taguchi, T., Ebizuka, Y., and Hopwood, D.A. (1998b). Biosyn-
thetic gene clusters of benzoisochromanequinone antibiotics in Streptomyces
spp. –identification of genes involved in post-PKS tailoring steps–. Actinomy-
cetologica 12, 99–109.
Ichinose, K., Surti, C., Taguchi, T., Malpartida, F., Booker-Milburn, K.I.,
Stephenson, G.R., Ebizuka, Y., and Hopwood, D.A. (1999). Proof that the actVI
genetic region of Streptomyces coelicolor A3(2) is involved in stereospecific
pyran ring formation in the biosynthesis of actinorhodin. Bioorg. Med. Chem.
Lett. 9, 395–400.
(20510205 to K.I.). A part of this work was financially supported by the
‘‘High-Tech Research Center’’ Project for Private Universities: matching fund
subsidy from MEXT, 2004–2008, and the Uehara Memorial Foundation to K.I.
Ichinose, K., Ozawa, M., Itou, K., Kunieda, K., and Ebizuka, Y. (2003).
Cloning, sequencing, and heterologous expression of the medermycin
biosynthetic gene cluster of Streptomyces sp. AM-7161: towards comparative
analysis of the benzoisochromanequionone gene clusters. Microbiology 149,
Received: November 19, 2008
Revised: January 22, 2009
Accepted: January 28, 2009
Published: February 26, 2009
1
633–1645.
Itoh, T., Taguchi, T., Kimberley, M.R., Booker-Milburn, K.I., Stephenson, G.R.,
Ebizuka, Y., and Ichinose, K. (2007). Actinorhodin biosynthesis: structural
requirements for post-PKS tailoring intermediates revealed by functional anal-
ysis of ActVI-ORF1 reductase. Biochemistry 46, 8181–8188.
REFERENCES
Bechthold, A., Sohng, J.K., Smith, T.M., Chu, X., and Floss, H.G. (1995).
Identification of Streptomyces violaceoruber T u¨ 22 genes involved in the
biosynthesis of granaticin. Mol. Gen. Genet. 248, 610–620.
Johnson, L.E., and Dietz, A. (1968). Kalafungin, a new antibiotic produced by
Streptomyces tanashiensis strain Kala. Appl. Microbiol. 16, 1815–1821.
Beltran-Alvarez, P., Cox, R.J., Crosby, J., and Simpson, T.J. (2007). Dissecting
the component reactions catalyzed by the actinorhodin minimal polyketide
synthase. Biochemistry 46, 14672–14681.
Kendrew, S.G., Harding, S.E., Hopwood, D.A., and Marsh, E.N.G. (1995).
Identification of a flavin:NADH oxidoreductase involved in the biosynthesis
of actinorhodin. Purification and characterization of the recombinant enzyme.
J. Biol. Chem. 270, 17339–17343.
Bentley, S.D., Chater, K.F., Cerde n˜ o-T a´ rraga, A.M., Challis,G.L., Thomson, N.R.,
James, K.D., Harris, D.E., Quail, M.A., Kieser, H., Harper, D., et al. (2002).
Complete genome sequence of the model actinomycete Streptomyces coeli-
color A3(2). Nature 417, 141–147.
Kendrew, S.G., Hopwood, D.A., and Marsh, E.N.G. (1997). Identification of
a monooxygenase from Streptomyces coelicolor A3(2) involved in biosyn-
thesis of actinorhodin: purification and characeterization of the recombinant
enzyme. J. Bacteriol. 179, 4305–4310.
Caballero, J.L., Martinez, F., Malpartida, F., and Hopwood, D.A. (1991). Orga-
nisations and functions of the actVA region of the actinorhodin biosynthetic
gene cluster of Streptomyces coelicolor. Mol. Gen. Genet. 230, 401–412.
Kieser, T., Bibb, M.J., Buttner, M.J., Chater, K.F., and Hopwood, D.A. (2000).
Practical Streptomyces Genetics (Norwich, UK: The John Innes Foundation).
Chater, K.F., and Hopwood, D.A. (1993). Streptomyces. In Bacillus subtilis and
Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular
Genetics, A.L. Sonenshein, J.A. Hoch, and R. Losick, eds. (Washington,
D.C.: American Society for Microbiology), pp. 83–89.
Kim, I.C., and Oriel, P.J. (1995). Characterization of the Baicillus stearothermo-
philusBR219phenolhydroxylase gene.Appl. Environ. Microbiol. 61, 1252–1256.
Korman, T.P., Tan, Y.H., Wong, J., Luo, R., and Tsai, S.C. (2008). Inhibition
kinetics and emodin cocrystal structure of a type II polyketide ketoreductase.
Biochemistry 47, 1837–1847.
Chen, Z.-G., Fujii, I., Ebizuka, Y., and Sankawa, U. (1995). Purification and
characterization of emodinanthrone oxygenase from Aspergiluus terreus.
Phytochemistry 38, 299–305.
Malpartida, F., and Hopwood, D.A. (1984). Molecular cloning of the whole
biosynthetic pathway of a Streptomyces antibiotic and its expression in
a heterologous host. Nature 309, 462–464.
Chung, J.Y., Harada, S., Fujii, I., Ebizuka, Y., and Sankawa, U. (2002). Expres-
sion, purification, and characterization of AknX anthrone oxygenase, which is
involved in aklavinone biosynthesis in Streptomyces galilaeus. J. Bacteriol.
McDaniel, R., Ebert-Khosla, S., Hopwood, D.A., and Khosla, C. (1993).
Engineered biosynthesis of novel polyketides. Science 262, 1546–1550.
1
84, 6115–6122.
Cole, S.P., Rudd, B.A.M., Hopwood, D.A., Chang, C.-J., and Floss, H.G.
1987). Biosynthesis of the antibiotic actinorhodin. Analysis of blocked mutants
Munro, A.W., Girvan, H.M., and McLean, K.J. (2007). Variation on a (t)heme –
novel mechanisms, redox partners and catalytic functions in the cytochrome
P450 superfamily. Nat. Prod. Rep. 24, 585–609.
(
of Streptomyces coelicolor. J. Antibiot. (Tokyo) 40, 340–347.
Rudd, B.A.M., and Hopwood, D.A. (1979). Genetics of actinorhodin biosyn-
Fern a´ ndez-Moreno, M.A., Martinez, E., Boto, L., Hopwood, D.A., and
Malpartida, F. (1992). Nucleotide sequence and deduced functions of a set
of cotranscribed genes of Streptomyces coelicolor A3(2) including the
polyketide synthease for the antibiotic actinorhodin. J. Biol. Chem. 267,
thesis by Streptomyces coelicolor A3(2). J. Gen. Microbiol. 114, 35–43.
Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989). Molecular Cloning:
A Laboratory Manual, Second Edition (Cold Spring Harbor, NY: Cold Spring
Harbor Laboratory).
19278–19290.
Fern a´ ndez-Moreno, M.A., Martinez, E., Caballero, J.L., Ichinose, K.,
Hopwood, D.A., and Malpartida, F. (1994). DNA sequence and functions of
the actVI region of the actinorhodin biosynthetic gene cluster of Streptomyces
coelicolor A3(2). J. Biol. Chem. 269, 24854–24863.
Sciara, G., Kendrew, S.G., Miele, A.E., Marsh, N.G., Federici, L., Malatesta, F.,
Schimperna, G., Sanvino, C., and Vallone, B. (2003). The structure of ActVA-
Orf6, a novel type of monooxygenase involved in actinorhodin biosynthesis.
EMBO J. 22, 205–215.
Floriano, B., and Bibb, M. (1996). afsR is a pleiotropic but conditionally
required regulatory gene for antibiotic production in Streptomyces coelicolor
A3(2). Mol. Microbiol. 21, 385–396.
Shen, B., and Hutchinson, C.R. (1993). Tetracenomycin F1 monooxygenase:
oxidation of naphthacenone to a naphthacenequinone in the biosynthesis of
tetracenomycin C in Streptomyces glaucescens. Biochemistry 32, 6656–6663.
Chemistry & Biology 16, 226–236, February 27, 2009 ª2009 Elsevier Ltd All rights reserved 235