H. Li et al. / Phytochemistry 117 (2015) 400–409
407
(ꢀ0.94) nm; IR (microscope) mmax 3381, 2931, 1701, 1454, 1367,
1243, 1026, 926 and 676 cmꢀ1; for 1H and 13C NMR spectroscopic
data, see Tables 1 and 2; HRESIMS m/z 387.2146 [M+Na]+ (calcd for
8 h at room temperature. After evaporating the solvent in vacuo,
the resulting crude oil was subjected to flash silica gel CC (petro-
leum ether/EtOAc, 4:1) to afford 1a (C33H38O6, 5.2 mg), which
was determined by NMR and MS spectra. CD (MeCN) (1.5 ꢁ 10ꢀ4
C21H32O5Na, 387.2142).
M) kmax
(D
e) 237 (+12.0), 222 (ꢀ15.3), 205 (ꢀ10.0), 196 (+13.4)
nm. 1H NMR (CD3OD, 400 MHz): dH 0.96 (3H, s, H-20), 1.03 (3H,
s, H-19), 1.15 (3H, s, H-18), 1.19 (3H, s, H-17), 5.24 (1H, d,
J = 9.4 Hz, H-3), 5.44 (1H, dd, J = 4.3, 9.4, 11.8 Hz, H-2), 5.46 (1H,
4.3.4. (2S,3R,5S,9S,10S,13S)-2-O-E-cinnamoyl-3-hydroxy-16-nor-ent-
pimar-8(14)-en-15-oic acid (4)
Colorless gum; ½a D25
ꢀ50.3 (c 0.16, MeOH); UV (MeOH) kmax
ꢂ
br s, H-14), 2.40 (1H, m, H-6
, H-12b and H-7b), 1.55 (1H, m, H-1b), 1.18 (1H, m, H-12
1.65 (1H, m, H-11 ), 1.46 (1H, m, H-11b), 1.73 (1H, m, H-6b),
1.52 (1H, m, H-6 ), 1.51 (1H, m, H-5), 1.97 (1H, t, J = 8.6 Hz, H-9),
a), 2.17 (3H, dd, J = 4.1, 12.3 Hz, H-
(loge) 275 (4.23), 217 (4.13), 206 (4.11) nm; CD (MeCN)
(5.3 ꢁ 10ꢀ5 M) kmax
(D
e) 288 (ꢀ19.14), 260 (+6.96), 228 (ꢀ1.44),
1a
a),
a
206 (ꢀ9.41) nm; IR (microscope) mmax 3415, 2943, 2872, 1711,
1636, 1450, 1310, 1280, 1201, 1165, 1027, 766, 710 and
684 cmꢀ1; for 1H and 13C NMR spectroscopic data, see Tables 1
and 2, the E-cinnamoyl group dH: 6.56 (1H, d, J = 16.0 Hz, H-20),
7.74 (1H, d, J = 16.0 Hz, H-30), 7.60 (2H, H-50 and H-90), 7.40–7.42
(3H, H-60, H-70 and H-80); dC: 168.4 (C-10), 119.5 (C-20), 146.3
(C-30), 136.0 (C-40), 129.4 (C-50 and C-90), 130.2 (C-60 and C-80),
131.6 (C-70); HRESIMS m/z 475.2468 [M+Na]+ (calcd for
a
[7.90 (2H, dd, J = 1.3, 8.3 Hz), 7.82 (2H, dd, J = 1.3, 8.3 Hz), 7.49
(2H, m), 7.35 (4H, m), 2,3-O-dibenzoyl groups]. 13C NMR (CD3OD,
100 MHz): dC 179.2 (C-15), 139.5 (C-8), 127.8 (C-14), 82.7 (C-3),
72.0 (C-2), 55.1 (C-5), 51.6 (C-9), 44.4 (C-13), 43.6 (C-1), 41.0
(C-4), 40.6 (C-10), 36.4 (C-7), 34.5 (C-12), 29.4 (C-18), 28.0
(C-17), 23.3 (C-6), 21.4 (C-11), 18.6 (C-19), 15.7 (C-20), [(168.1,
134.4, 131.4, 130.6, 130.6, 129.7, 129.7) and (167.6, 134.3, 131.3,
130.6, 130.6, 129.5, 129.5), 2,3-O-benzoyl groups]. ESIMS m/z
553.3 [M+Na]+, 529.3 [MꢀH]ꢀ.
C28H36O5Na, 475.2460).
4.3.5. 3a,14b-diacetoxy-16-nor-ent-pimar-15a,8-olide (5)
Colorless oil; ½a D25
ꢀ8.5 (c 0.16, MeOH); UV (MeOH) kmax (loge)
ꢂ
206 (3.21) nm; CD (MeCN) (9.6 ꢁ 10ꢀ5 M) kmax
(D
e) 224 (ꢀ0.13)
4.5. Preparation of (S)- and (R)-MTPA esters of 2
nm; IR (microscope) mmax 2922, 2850, 1779, 1732, 1646, 1368,
1254, 1224, 1214, 1141, 1062, 975, 953 and 755 cmꢀ1; for 1H
and 13C NMR spectroscopic data, see Tables 1 and 2; HRESIMS
m/z 429.2264 [M+Na]+ (calcd for C23H34O6Na, 429.2248).
A solution of compound 2 (1.0 mg) in deuterated pyridine-d5
(0.5 mL) was treated with (R)-MTPA chloride (10 lL) under N2 in
an NMR tube and immediately shaken until uniformly mixed.
The mixture was stirred at room temperature for 8 h. The 1H
NMR spectrum, recorded directly from the reaction NMR tube,
showed the production of the corresponding (S)-MTPA ester (2a).
Preparation of (R)-MTPA ester (2b) was performed in the same
manner by treatment of 2 (1.0 mg) with (S)-MTPA chloride.
4.3.6. (2S,3R,5S,10R)-2,3-dihydroxy-15,16-dinor-ent-pimar-8,11,13-
triene (6)
Colorless oil; ½a D25
ꢂ
+14.6 (c 0.16, MeOH); UV (MeOH) kmax (loge)
216 (3.74), 207 (3.85) nm; Mo2(OAc)4-induced CD (DMSO) kmax
(De) 302 (+0.354) nm; IR (microscope) mmax 3384, 2944, 1618,
1499, 1457, 1377, 1280, 1131, 1043, 992, 940, 890, 810 and
678 cmꢀ1; for 1H and 13C NMR spectroscopic data, see Tables 1
and 2; HRESIMS m/z 297.1836 [M+Na]+ (calcd for C18H26O2Na,
297.1825).
4.5.1. (S)-MTPA ester (2a)
1H NMR (C5D5N, 400 MHz): dH 7.60–7.41 (5H, m, phenyl of
MTPA), 5.36 (1H, s, H-14), 4.92 (1H, J = 6.2, 10.0 Hz, H-3), 3.52
(3H, s, –OMe of MTPA), 1.28 (3H, s, H-17), 1.17 (3H, s, H-18),
0.92 (3H, s, H-19), 0.84 (3H, s, H-20), 2.42 (1H, m, H-7
(2H, m, H-7b and H-12b), 1.88 (1H, m, H-2 ), 1.82 (1H, m, H-1
1.73 (1H, m, H-9), 1.65 (2H, m, H-6b and H-11b), 1.54 (1H, m,
H-2b), 1.47 (2H, m, H-6 and H-11 ), 1.45 (1H, m, H-1b), 1.09
a
), 2.17
a
a),
4.3.7. (2S,3R,5S,10R)-2-acetoxy-3-hydroxy-15,16-dinor-ent-pimar-
8,11,13-triene (7)
Colorless oil; ½a D25
ꢂ
+25.5 (c 0.17, MeOH); UV (MeOH) kmax (loge)
a
a
(1H, m, H-12a), 1.06 (1H, m, H-5). HRESIMS m/z 545.2497
215 (3.73), 205 (3.84) nm; IR (microscope) mmax 3392, 2947, 1716,
1499, 1365, 1245, 1059, 1029, 860 and 814 cmꢀ1; for 1H and 13C
NMR spectroscopic data, see Tables 1 and 2; HRESIMS m/z
339.1935 [M+Na]+ (calcd for C20H28O3Na, 339.1931).
[M+Na]+ (calcd for C29H37F3O5Na, 545.2491).
4.5.2. (R)-MTPA ester (2b)
1H NMR (C5D5N, 400 MHz): dH 7.62–7.41 (5H, m, phenyl of
MTPA), 5.36 (1H, s, H-14), 4.92 (1H, J = 6.2, 10.0 Hz, H-3), 3.65
(3H, s, –OMe of MTPA), 1.28 (3H, s, H-17), 1.21 (3H, s, H-18),
4.3.8. (3R,5S,9S,10S,13S)-3,16-dihydroxyl-15-one-ent-pimar-8(14)-
ene-3-O-b- -glucopyranoside (11)
D
Colorless gum; ½a D25
ꢂ
ꢀ6.5 (c 0.23, MeOH); UV (MeOH) kmax
0.99 (3H, s, H-19), 0.83 (3H, s, H-20), 2.41 (1H, m, H-7
(2H, m, H-7b and H-12b), 1.81 (1H, m, H-2 ), 1.77 (1H, m, H-1
1.72 (1H, m, H-9), 1.66 (2H, m, H-6b and H-11b), 1.51 (1H, m,
H-2b), 1.47 (2H, m, H-6 and H-11 ), 1.43 (1H, m, H-1b), 1.08
a), 2.15
(loge) 204 (3.42) nm; CD (MeCN) (7.5 ꢁ 10ꢀ5 M) kmax
(De) 218
a
a),
(ꢀ1.00), 293 (+0.33); IR (microscope) mmax 3352, 2936, 1709,
1363, 1074, 1016 and 655 cmꢀ1; for 1H and 13C NMR spectroscopic
data, see Tables 1 and 2; HRESIMS m/z 505.2760 [M+Na]+ (calcd for
a
a
(1H, m, H-12a), 1.04 (1H, m, H-5). HRESIMS m/z 545.2501
[M+Na]+ (calcd for C29H37F3O5Na, 545.2491).
C26H42O8Na, 505.2772).
4.3.9. Lonchophylloid B (10)
4.6. Alkaline hydrolysis of 3, 4 and 7
Colorless needles (CHCl3/petroleum ether); ½a D25
ꢀ10.2 (c 0.13,
ꢂ
MeOH); CD (MeCN) (9.4 ꢁ 10ꢀ5 M) kmax
(+0.31) nm; ESIMS m/z 343.3 [M+Na]+.
(D
e) 216 (ꢀ1.19), 291
A solution of each diterpenoid (2 mg) in (MeOH/H2O, 1 mL, 1:1)
was stirred with aqueous NaOH (0.1 M, 0.5 ml) for 4 h at room
temperature. The mixture was then treated with HCl (0.1 M) until
pH 6–7 and subjected to Sephadex LH-20 using MeOH as eluent to
afford the pure corresponding hydrolysis product, which was iden-
tified on the basis of its 1H NMR spectrum, Rf values and specific
rotation.
4.4. Preparation of the 2,3-dibenzoate (1a)
Benzoyl chloride (100
lL) was added to a stirred solution of 1
(4.5 mg) in pyridine (1 mL) under N2 with the mixture stirred for