Origin of Chiral Induction in Radical Reactions
reactions,11,12 additions of dipole compounds13 and rad-
icals,14-16 tandem or domino reactions,17 cis-hydroxyla-
tions,18 and complexation to metal atoms19 have been
carried out often with complete facial diastereoselectivity.
Photochemical [2 + 2] cycloaddition which occurs at the
excited state of 1 was significantly less diastereoselec-
tive20,21 since the geometry of the excited state of alkoxy-
furanones is significantly different from the ground-state
geometry.22
(5R)-5-l-Menthyloxyfuran-2[5H]-one (1) was easily ob-
tained in dia- and enantiopure form due to the high
crystallinity of this menthol derivative. Many similar
menthyloxy derivatives have been described in the
literature. Menthyloxyfuranone derivatives carrying an
additional alkyl substituent21,23,24 or halogen atoms at the
double bond10,25 have been obtained in enantiopure form.
Sulfonyl or sulfinyl substituents in these positions are
sometimes necessary to enhance the reactivity.26 Menthol
seems to contribute significantly to the high crystallinity
of one diastereomeric acetal. All attempts to replace it
by another enantiopure alcohol were not successful.12,27
In some of these cases, however, the diastereomers could
be separated by chromatography.
For the first time, the present publication reports the
isolation of (5S)-5-l-menthyloxyfuran-2[5H]-one (2). De-
spite numerous applications to asymmetric organic syn-
thesis, only few publications give a deeper insight into
the origin of chiral induction of 1 or en t-1. One major
question which frequently arises deals with the influence
of the menthyloxy substituent, and many alternatives are
proposed. The following study reveals the influence of the
chiral acetal function on one hand and the menthyl
moiety on the other hand, on the diastereoselectivity of
the tandem addition cyclization reaction of 1 and 2 with
tertiary aromatic amines.
Resu lts a n d Discu ssion
(5R)-5-l-Menthyloxyfuran-2[5H]-one (1) was synthe-
sized in two steps (Scheme 1). Photooxygenation of
furfural 328 provided 5-hydroxyfuran-2[5H]-one 4 in high
yield (91%). The reaction was preferentially carried out
in methanol as solvent. During the reaction and when
the solvent was evaporated, care was taken to maintain
the temperature under 35 °C so that to acetalization with
methanol was avoided.29 Acetalization with (-)-menthol
yielded the two diastereomers (5R)- (1) and (5S)-5-l-
menthyloxyfuran-2[5H]-one (2) with a ratio of about 1/1.
When the recrystallization from petroleum ether was
carried out at about 4 °C or at room temperature, only
the (5R)-diastereoisomer 1 was isolated.30 This isomer
was mostly applied to organic synthesis. Especially in the
case when the crystallization is carried out in the
presence of traces of acid, 2 is progressively transformed
into 1 as far as the latter crystallizes.5 In this way, only
one stereoisomer of 5-menthyloxyfuran-2[5H]-one is ob-
tained. However, when the crystallization was performed
from petroleum ether at -28 °C, two forms of crystals
were observed. Small needles possessing a melting point
of 79 °C were isolated as the major product and cor-
respond to structure 1. Aside from this isomer, more
massive crystals could be picked out in gram scale. These
crystals with a melting point of 41 °C possess a size
between 2 mm and 2.5 cm and correspond to structure
2. They have been picked out with tweezers or have been
recovered by passing the crystal mixture through a sieve.
Some characteristic NMR data are also given in the
Supporting Information.
(10) Huang, H.; Chen, Q. Tetrahedron: Asymmetry 1999, 10, 1295.
(11) (a) Feringa, B. L.; de J ong, J . C. J . Org. Chem. 1988, 53, 1125.
(b) Pelter, A.; Ward, R. S.; Qianrong, L.; Pis, J . Tetrahedron: Asym-
metry 1994, 5, 909. (c) Bush, E. J .; J ones, D. W. J . Chem. Soc., Perkin
Trans. 1 1996, 151. (d) J auch, J . Eur. J . Org. Chem. 2001, 473. (e)
Bernardelli, P.; Moradei, O. M.; Friedrich, D.; Yang, J .; Gallou, F.;
Dyck, B. P.; Doskotch, R. W.; Lange, T.; Paquette, L. A. J . Am. Chem.
Soc. 2001, 123, 9021.
(12) de J ong, J . C.; van Bolhuis, F.; Feringa, B. L. Tetrahedron:
Asymmetry 1991, 2, 1247.
(13) (a) Rispens, M. T.; Keller, E.; de Lange, B.; Zijlstra, R. W. J .;
Feringa, B. L. Tetrahedron: Asymmetry 1994, 5, 607. (b) Cooper, D.
M.; Grigg, R.; Hargreaves, S.; Kennewell, P.; Redpath, J . Tetrahedron
1995, 51, 7791.
(14) (a) Hoffmann, N. Tetrahedron: Asymmetry 1994, 5, 879. (b)
Belokon, Yu. N.; Kochetkow, K. A.; Moskalenko, M. A.; Raevsky, N.
I.; Savel’eva, T. F.; Tararov, V. I.; Churkina, T. D. Russ. Chem. Bull.
1995, 44, 517. (c) Brule´, C.; Hoffmann, N. Tetrahedron Lett. 2002, 43,
69.
(15) (a) Bertrand, S.; Glapski, C.; Hoffmann, N.; Pete, J .-P. Tetra-
hedron Lett. 1999, 40, 3169. (b) Bertrand, S.; Hoffmann, N.; Pete, J .-
P. Tetrahedron Lett. 1999, 40, 3173. (c) Bertrand, S.; Hoffmann, N.;
Pete, J .-P. Eur. J . Org. Chem. 2000, 2227. (d) Marinkovic´, S.; Hoffmann
N. Chem. Commun. 2001, 1576. (e) Marinkovic´, S.; Hoffmann N. Intern.
J . Photoenergy 2003, 5, 175.
(16) Bertrand, S.; Hoffmann, N.; Humbel, S.; Pete, J .-P. J . Org.
Chem. 2000, 65, 8690.
(17) (a) Van Speybroeck, R.; Guo, H.; Van der Eycken, J .; Vander-
walle, M. Tetrahedron 1991, 47, 4675. (b) Pelter, A.; Ward, R. S.; Storer,
N. P. Tetrahedron 1994, 50, 10829. (c) Pelter, A.; Ward, R. S.; Abd-
el-Ghani, A. J . Chem. Soc., Perkin Trans. 1 1996, 1353. (d) Brinksma,
J .; van der Deen, H.; van Oeveren, A.; Feringa, B. L. J . Chem. Soc.,
Perkin Trans. 1 1998, 4159. (e) J auch, J . J . Org. Chem. 2001, 66, 609.
(18) Sundermann, B.; Scharf, H.-D. Tetrahedron: Asymmetry 1996,
7, 1995.
(19) Enders, D.; Schmitz, T.; Raabe, G.; Kru¨ger, C. Acta Crystallogr.
1991, C47, 37.
(20) (a) Hoffmann, N.; Scharf, H.-D.; Runsink, J . Tetrahedron Lett.
1989, 30, 2637. (b) Bertrand, S.; Hoffmann, N.; Pete, J .-P. Tetrahedron
1998, 54, 4873.
(21) Hoffmann, N.; Scharf, H.-D. Liebigs Ann. Chem. 1991, 1273.
(22) (a) Hoffmann, N.; Buschmann, H.; Raabe, G.; Scharf, H.-D.
Tetrahedron 1994, 50, 11167. For a recent study with similar mol-
ecules, see: (b) Albie´s, R.; de March, P.; Figueredo, M.; Font, J .; Fu,
X.; Racamonde, M.; Alvarez-Larena, A.; Piniello, J . F. J . Org. Chem.
2003, 68, 1283.
(23) (a) Ro¨hrig, S.; Hennig, L.; Findeisen, M.; Welzel, P.; Frischmuth,
K.; Marx, A.; Petrowitsch, T.; Koll, P.; Mu¨ller, D.; Mayer-Figgen, H.;
Sheldrick, W. S. Tetrahedron 1998, 54, 3413. (b) Grossmann, G.;
Se´quin, U. Synlett 2001, 278.
(26) (a) de J ong, J . C.; van den Berg, K. J .; van Leusen, A. M.;
Feringa, B. L. Tetrahedron Lett. 1991, 32, 7751. (b) Garc´ıa Ruano, J .
L.; Bercial, F.; Fraile, A.; Mart´ın Castro, A. M.; Mart´ın, M. R.
Tetrahedron: Asymmetry 2000, 11, 4737. (c) Garc´ıa Ruano, J . L.;
Bercial, F.; Gonza´lez, G.; Mart´ın Castro, A. M.; Mart´ın, M. R.
Tetrahedron: Asymmetry 2002, 13, 1993.
(27) (a) Lattmann, E.; Hoffmann, H. M. R. Synthesis 1996, 155. (b)
Cui, J .; Du, B.; Chen, Q. Sci. Chin. (Ser. B) 1998, 41, 65. (c) Frischmuth,
K.; Mu¨ller, D.; Welzel, P. Tetrahedron 1998, 54, 3401. (d) Hoffmann,
N. Ph.D. Dissertation, RWTH Aachen, 1992.
(28) (a) Schenck, G. O. Liebigs Ann. Chem. 1953, 584, 156. (b)
Schroeter, S.; Appel, H. R.; Brammer, R.; Schenck, G. O. Liebigs Ann.
Chem. 1966, 697, 42.
(29) Bolz, G.; Wiersdorff, W.-W. (BASF) German Offen. 2111119,
1972.
(24) Gawronski, J . K.; van Oeveren, A.; van der Deen, H.; Leung,
C. W.; Feringa, B. L. J . Org. Chem. 1996, 61, 1513.
(25) (a) Fenske, D.; Merzweiler, K. Z. Naturforsch. 1989, 44b, 879.
(b) Chen, Q. H.; Geng, Z.; Huang, B. Tetrahedron: Asymmetry 1995,
6, 401. (c) Curtius, F. W.; Scharf, H.-D. Tetrahedron: Asymmetry 1996,
7, 2957. (d) Gerlach, K.; Hoffmann, H. M. R.; Wartchow, R. J . Chem.
Soc., Perkin Trans. 1 1998, 3867. (e) Huang, H.; Chen, Q. Tetrahe-
dron: Asymmetry 1998, 9, 4103. (f) Maestro, M. C.; Barquilla, M. C.;
Mart´ın, M. R. Tetrahedron: Asymmetry 1999, 10, 3593.
(30) The diastereoismer en t-1 possessing the S configuration at the
acetal center can be obtained via the same procedure using d-menthol
as chiral substrate.
J . Org. Chem, Vol. 69, No. 5, 2004 1647