Page 5 of 7
PleaseRd So Cn oA t da vd aj un s ct ems argins
DOI: 10.1039/C5RA16616K
Journal Name
COMMUNICATION
The stretching further enhanced the negative character of the at 130 °C for 24 h. Both the acid strength and LSPR effect of
oxygen atom in the -1, 4 glycosidic bond. Consistent with Au-NPs have key impacts on processing efficiency. The
thermal reactions, the C1’ O bond in the -1, 4 glycosidic processing mechanism was proposed with the acid strength
β
–
β
linkage was stretched and broke down to glucose and a enhanced by the polarized electrical fields of zeolites due to
positive carbon cation (step II). With polarized water the LSPR effect. The outcomes would significantly decrease
molecular, the hydrolysis reaction at the positive carbon cation processing costs, reduce energy consumption, and contribute
+
easily proceeded to produce glucose and release a proton H
3
to the utilisation of broad biomass resources. This research has
great potential to make biofuel and chemical productions
renewable. More significantly, due to the solid nature of the
catalysts, the separation and recycling of catalysts from the
liquid product solution becomes more readily after complete
conversion of cellulose.
1
(step III).
OH
OH
OH
6
5
H
O
II
4
HO
O
O
O
O
OH
O
HO
HO
HO
Glucose
OH
3
2
1
OH
OH
hv
OH
+
6'
Zeolite/TiO2
4'
I
H+
5'
O
Au
O
HO
2'
1'
3'
H
H
OH
References
O
OH
OH
OH
6'
5'
III
1
P. S. Shuttleworth, M. Debruyn, H. L. Parker, A. J. Hunt, V. L.
Budarin, A. Matharu, J. Clark, Green Chem. 2014, 16, 573-
584.
6'
6
4
H+
4'
5
'
O
5
O
O
+
O
O
4'
HO
HO
O
OH
1'
2
'
1'
3
2
1
O
3
'
n
HO
OH
OH
2'
3
'
2
3
4
M. Poliakoff, P. Licence, Nature 2007, 450, 810-812.
Y. B. Huang, Y. Fu, Green Chem. 2013, 15, 1095-1111.
L. Liu, L. Lin, Z. Wu, S. Y. Zhou, S. J. Liu, Appl. Catal. B 2015,
OH
Cellulose
1
74-175, 225-243.
W. S. Mok, M. J. Antal Jr, G. Varhegyi, Ind. Eng. Chem. Res.
992, 31, 94-100.
Scheme 3. The processing mechanism for the hydrolysis of
5
6
7
8
9
cellulose to glucose under light irradiation on Au-HYT.
1
L. Kupiainen, J. Ahola, J. Tanskanen, Ind. Eng. Chem. Res.
2012, 51, 3295-3300.
R. Rinaldi, N. Meine, J. vom Stein, R. Palkovits, F. Schüth,
ChemSusChem 2010, 3, 266-276.
A. A. Rosatella, S. P. Simeonov, R. F. M. Frade, C. A. M.
Afonso, Green Chem. 2011, 13, 754-793.
C. Tagusagawa, A. Takagaki, A. Iguchi, K. Takanabe, J. N.
Kondo, K. Ebitani, T. Tatsumi, K. Domen, Chem. Mater. 2010,
22, 3072-3078.
0 C. Tagusagawa, A. Takagaki, A. Iguchi, K. Takanabe, J. N.
Kondo, K. Ebitani, S. Hayashi, T. Tatsumi, K. Domen, Angew.
Chem., Int. Ed. 2010, 49, 1128-1132.
1 J. Xi, Y. Zhang, Q. Xia, X. Liu, J. Ren, G. Lu, Y. Wang, Appl.
Catal. A 2013, 459, 52-58.
2 P. Sun, X. Long, H. He, C. Xia, F. Li, ChemSusChem 2013, 6,
2190-2197.
3 A. A. Dwiatmoko, J. W. Choi, D. J. Suh, Y. Suh, H. H. Kung,
Appl. Catal. A 2010, 387, 209-214.
4 X. Qi, M. Watanabe, T. M. Aida, R. L. Smith Jr, Green Chem.
2008, 10, 799-805.
5 K. Fukuhara, K. Nakajima, M. Kitano, H. Kato, S. Hayashi, M.
Similarly, the subsequent conversion from glucose to HMF
went through a dehydration process assisted by solid acid
catalysts (see SI, Scheme S1). Apart from the solid acid (proton
+
H ) attacking the O in C-O-C (step I in SI, Scheme S1), the
glucose underwent an opening-cycle reaction. Meanwhile, a
carbonyl bond is formed (step II in SI, Scheme S1), which could
be enhanced by plasmonic structure (Au-NPs) and had been
well documented by our previous works as well as other
groups. To make it simple, this process to form a carbonyl
bond is similar to the oxidation of alcohols, where the
electromagnetic fields enhanced by LSPR effect of Au-NPs
produced energetic electrons and thus promote the hydrogen-
1
1
1
1
1
1
1
1
2
6,27,32-34
abstracting process.
inter-molecular dehydration processes proceeded. After losing
water molecules in total (steps II-IV in SI, Scheme S1), the
Subsequently, the continuous
3
HMF could be formed. During this process, both acid strength
and LSPR effect played crucial roles. The effect of light
irradiation on ionic liquids will be further investigated apart
from function as solvents.
Hara, ChemSusChem 2011,
6 F. Tao, H. Song, L. Chou, Bioresour Technol. 2011, 102, 9000-
006.
7 Y. Ogasawara, S. Itagaki, K. Yamaguchi, N. Mizuno,
ChemSusChem 2011, , 519-525.
18 D. Lai, L. Deng, Q. Guo, Y. Fu, Energy Environ. Sci. 2011,
552-3557.
9 D. Lai, L. Deng, J. Li, B. Liao, Q. Guo, Y. Fu, ChemSusChem
2011, , 55-58.
4, 778-784.
9
4
Conclusions
4,
3
The communication unravels a plasmonic enhancement effect
under visible light irradiation for the conversion of cellulosic
1
4
biomass. The new plasmonic nanostructure can efficiently 20 H. Cai, C. Li, A. Wang, G. Xu, T. Zhang, Appl. Catal. B 2012,
1
23–124, 333-338.
1 J. A. Geboers, S. V. Vyver, R. Ooms, B. O. Beeck, P. A. Jacobs,
B. F. Sels, Catal. Sci. Technol. 2011, , 714-726.
absorb visible light by means of supported Au-NPs on active
zeolite catalysts. Moreover, light energy interacts directly with
active sites of catalysts and avoids the heating of the whole
solvent system. Therefore reactions can be conducted at
2
2
1
2 Z. Shan, H. Wan, X. Meng, S. Liu, L. Wang, C. Wang, Chem.
Commun. 2011, 47, 1048-1050.
moderate conditions. This study demonstrated the influences 23 X. B. Ke, X. G. Zhang, H. W. Liu, S. Xue, H. Y. Zhu, Chem.
Commun. 2013, 49, 9866-9868.
of reaction temperatures, light intensity and light wavelength
2
4 S. Linic, U. Aslam, C. Boerigter, M. Morabito, Nature. Mater.
015, 14, 567-576.
for cellulose conversion to valuable chemicals. Under mild
conditions, the yield of glucose and HMF achieved above 60%
2
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 5
Please do not adjust margins