314
N. Li et al. / Journal of Catalysis 225 (2004) 307–315
elucidate the promoting effect of Co to the activity of SZ
from an adsorption point of view.
[14] L. Ren, T. Zhang, D. Liang, C. Xu, J. Tang, L. Lin, Appl. Catal. B 35
2002) 317.
15] A.W. Aylor, L.J. Lobree, J.A. Reimer, A.T. Bell, J. Catal. 170 (1997)
90.
16] M.C. Campa, D. Pietrogiacomi, S. Tuti, G. Ferraris, V. Indovina, Appl.
Catal. B 18 (1998) 151.
(
[
[
In addition, it can be seen from Fig. 12 that the NO-
TPD profile of a 4 wt% Co/SZ catalyst contains two peaks.
According to the literature [60], the first peak at low temper-
3
4
+
ature can be attributed to the NO desorption from Zr –NO
[17] Q. Sun, W.M.H. Sachtler, Appl. Catal. B 42 (2003) 393.
18] Y. Li, J.N. Armor, J. Catal. 145 (1994) 1.
[19] K. Yogo, E. Kikuchi, Stud. Surf. Sci. Catal. 84 (1994) 1547.
and Co2 (NO)2; the second peak at high temperature can be
+
[
n+
assigned to the NO desorption from the Co –NO (n = 2, 3)
[20] X. Zhou, T. Zhang, Z. Xu, L. Lin, Catal. Lett. 40 (1996) 35.
[21] X. Zhou, Z. Xu, T. Zhang, L. Lin, J. Mol. Catal. A 122 (1997) 125.
[22] X. Wang, T. Zhang, X. Sun, W. Guan, D. Liang, L. Lin, Appl. Catal.
B 24 (2000) 169.
species. Furthermore, it is found that the NO-TPD profile
of our 4 wt% Co/SZ seems very similar to that obtained by
Hadjiivanov et al. [60] on their highly dispersed Co/SZ sam-
ple (relative Co dispersion is 1.00), which reflects the high
Co dispersion in our 4 wt% Co/SZ catalyst in another way.
[
[
[
23] X. Wang, T. Zhang, C. Xu, X. Sun, D. Liang, L. Lin, J. Chem. Soc.,
Chem. Commun. 4 (2000) 279.
24] L. Ren, T. Zhang, J. Tang, J. Zhao, N. Li, L. Lin, Appl. Catal. B 41
(2003) 129.
25] C.J. Loughran, D.E. Resasco, Appl. Catal. B 7 (1995) 113.
4
. Conclusions
[26] B. Wen, Q. Sun, W.M.H. Sachtler, J. Catal. 204 (2001) 314.
[
[
[
27] Y. Li, P.J. Battavio, J.N. Armor, J. Catal. 142 (1993) 561.
28] Y. Li, J.N. Armor, Appl. Catal. B 5 (1995) L257.
29] P. Budi, E. Curry-Hyde, R.F. Howe, Stud. Surf. Sci. Catal. 105 (1997)
It was demonstrated that both the sulfation of the sup-
ports and the metal loading played an important role in de-
termining the catalytic performance of Co/sulfated zirconia
catalysts. The sulfation process improved the dispersion of
Co species and provided the strong Brønsted and Lewis acid
sites which are essential for NO reduction. Both effects of
sulfation maintained a high CH4 selectivity toward NO re-
duction. Whereas, the loading of Co increased the number
of strong Lewis acid sites and increased the NO adsorption
of SZ, such dual effects of Co loading are responsible for its
promoting effect for the SCR NO over SZ catalyst.
1
549.
[30] Z. Li, M. Flytzani-Stephanopoulos, Appl. Catal. B 22 (1999) 35.
[31] N. Li, A. Wang, J. Tang, X. Wang, D. Liang, T. Zhang, Appl. Catal.
B 43 (2003) 195.
[
32] C. Morterra, G. Cerrato, F. Pinna, M. Signoretto, J. Catal. 157 (1995)
09.
1
[
33] J.T. Miller, E. Glusker, R. Peddi, T. Zheng, J.R. Regalbuto, Catal.
Lett. 51 (1998) 15.
[34] J.R. Regalbuto, T. Zheng, J.T. Miller, Catal. Today 54 (1999) 495.
[
35] J.-Y. Yan, H.H. Kung, W.M.H. Sachtler, M.C. Kung, J. Catal. 175
(1998) 294.
[
[
[
36] E. Kikuchi, K. Yogo, Catal. Today 22 (1994) 73.
37] E. Kikuchi, M. Ogura, I. Terasaki, Y. Goto, J. Catal. 161 (1996) 465.
38] M. Misono, Y. Nishizaka, M. Kawamoto, H. Kato, Stud. Surf. Sci.
Catal. 105 (1997) 1501.
39] H. Kato, C. Yokoyama, M. Misono, Catal. Today 45 (1998) 93.
40] A. Corma, V. Fornes, M.I. Juan-Rajadell, J.M. Lopez Nieto, Appl.
Catal. A 116 (1994) 151.
41] B.H. Davis, R.A. Keogh, S. Alerasool, D.J. Zalewski, D.E. Day, P.K.
Doolin, J. Catal. 183 (1999) 45.
42] J.A. Lercher, C. Grundling, G. Eder-Mirth, Catal. Today 27 (1996)
Acknowledgments
[
[
Prof. Can Li, Pinliang Ying, Dr. Zhimin Liu, and Wei-
cheng Wu are acknowledged for their great help in FT-IR
spectroscopy characterization.
[
[
353.
[
43] M. Kantcheva, A.S. Vakkasoglu, J. Catal. 223 (2004) 352.
References
[44] D. Pietrogiacomi, M.C. Campa, S. Tuti, V. Indovina, Appl. Catal. B 41
(
2003) 301.
[
[
[
[
1] M. Iwamoto, in: Proceedings of Meeting of Catalytic Technology for
Removal of Nitrogen Monoxide, Tokyo, Japan, 1990, p. 17.
2] W. Held, A. Konig, T. Richter, L. Puppe, Soc. Automot. Eng. (1990),
Paper 900 496.
[45] M. Kantcheva, A.S. Vakkasoglu, J. Catal. 223 (2004) 364.
[46] S.-J. Jong, S. Cheng, Appl. Catal. A 126 (1995) 51.
[47] X. Wang, H.-Y. Chen, W.M.H. Shachtler, Appl. Catal. B 26 (2000)
L227.
[48] C. Resini, T. Montanari, L. Nappi, G. Bagnasco, M. Turco, G. Busca,
F. Bregani, M. Notaro, G. Rocchini, J. Catal. 214 (2003) 179.
[49] D. Pietrogiacomi, S. Tuti, M.C. Campa, V. Indovina, Appl. Catal. B 28
(2000) 43.
3] Y. Traa, B. Burger, J. Weitkamp, Micropor. Mesopor. Mater. 30 (1999)
3.
4] V. Indovina, D. Pietrogiacomi, M.C. Campa, Appl. Catal. B 39 (2002)
15.
1
[
[
[
[
5] Y. Li, J.N. Armor, Appl. Catal. B 1 (1992) L31.
6] J.N. Armor, Catal. Today 26 (1995) 147.
7] M.D. Fokema, J.Y. Ying, Catal. Rev.-Sci. Eng. 43 (2001) 1.
8] Y.-H. Chin, A. Pisanu, L. Serventi, W.E. Alvarez, D.E. Resasco, Catal.
Today 54 (1999) 419.
[50] M. Che, F. Bozono-Verduraz, in: G. Ertl, H. Knozinger, J. Weitkamp
(Eds.), in: Handbook of Heterogeneous Catalysis, vol. 2, Wiley, New
York, 1997, p. 641.
[51] Y. Li, J.N. Armor, Stud. Surf. Sci. Catal. 81 (1994) 103.
[52] M.C. Campa, S.D. Rossi, G. Ferraris, V. Indovina, Appl. Catal. B 8
(1996) 315.
[9] Y.-H. Chin, W.E. Alvarez, D.E. Resasco, Catal. Today 62 (2000) 159.
[
10] H. Ohtsuka, Appl. Catal. B 33 (2001) 325.
[53] M.C. Campa, I. Luisetto, D. Pietrogiacomi, V. Indovina, Appl. Catal.
B 46 (2003) 511.
[54] B.J. Adelman, T. Beutel, G.-D. Lei, W.M.H. Sachtler, J. Catal. 158
(1996) 327.
[55] D. Kaucky, J. Dedecek, B. Wichterlova, Micropor. Mesopor. Mater. 31
(1999) 75.
[11] J. Tang, T. Zhang, D. Liang, C. Xu, X. Sun, L. Lin, J. Chem. Soc.,
Chem. Commun. 19 (2000) 1861.
[
[
12] X. Wang, H. Chen, W.M.H. Sachtler, Appl. Catal. B 29 (2001) 47.
13] J. Tang, T. Zhang, L. Ma, L. Li, J. Zhao, M. Zheng, L. Lin, Catal.
Lett. 73 (2001) 193.