Organometallics
Article
occurred by photoelectron transfer from the excited state of
relatively electron rich DTGO-Si to electron deficient nitoro-
benzene, as often proposed for the sensing of nitroaromatics.22 It
is noteworthy that the compound exhibited the sensitivity in the
solid state. Solid-state sensing toward the vapor is an important
issue for the convenient detection of nitroaromatics.23 However,
organic fluorophores usually show concentration quenching in the
solid state that decreases the fluorescence intensity and thus are
difficult to use for turn-off sensors in the solid state.
Optimized geometry of DTGMe (MOL)
Optimized geometry of DTGPh (MOL)
Optimized geometry of DTGPhF (MOL)
Optimized geometry of DTGAPh (MOL)
AUTHOR INFORMATION
Corresponding Author
■
Notes
The sensitivity of DTGO-Si was examined in THF in com-
parison with that of DTGH. As shown in Figure 6, DTGO-Si
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by a Grant-in-Aid for Scientific
Research on Innovative Areas “New Polymeric Materials Based
on Element-Blocks (No. 2401)” from The Ministry of Education,
Culture, Sports, Science, and Technology of Japan.
REFERENCES
■
(1) (a) Tamao, K.; Yamaguchi, S.; Shiozaki, M.; Nakagawa, Y.; Ito, Y.
J. Am. Chem. Soc. 1992, 114, 5867−5869. (b) Yamaguchi, S.; Tamao,
K. J. Chem. Soc., Dalton Trans. 1998, 3693−3702. (c) Tamao, K.;
Uchida, M.; Izumizawa, T.; Furukawa, K.; Yamaguchi, S. J. Am. Chem.
Soc. 1996, 118, 11974−11975. (d) Yamaguchi, S.; Tamao, K. Chem.
Lett. 2005, 34, 2−7. (e) Ponomarenko, S. A.; Kirchmeyer, S. Adv.
Polym. Sci. 2010, 235, 33−110. (f) Li, Y. Acc. Chem. Res. 2012, 45,
723−733.
(2) (a) Sohn, H.; Huddleston, R. R.; Powell, D. R.; West, R. J. Am.
Chem. Soc. 1999, 121, 2935−2936. (b) Chen, J.; Law, C. C. W.; Lam, J.
W. Y.; Dong, Y.; Lo, S. M. F.; Williams, I. D.; Zhu, D.; Tang, B. Z.
Chem. Mater. 2003, 15, 1535−1546. (c) Chan, K. L.; Mckiernan, M. J.;
Towns, C. R.; Holmes, A. B. J. Am. Chem. Soc. 2005, 127, 7662−7663.
(3) (a) Tamao, K.; Uchida, M.; Izumizawa, T.; Furukawa, K.;
Yamaguchi, S. J. Am. Chem. Soc. 1996, 118, 11974−11975.
(b) Keyworth, C. W.; Chan, K. L.; Labram, J. G.; Anthopoulos, T.
D.; Watkins, S. E.; McKiernan, M.; White, A. J. P.; Holmes, A. B.;
Williams, C. K. J. Mater. Chem. 2011, 21, 11800−11814.
(4) Chujo, Y.; Tanaka, K. Bull. Chem. Soc. Jpn. 2015, 88, 633−643.
(5) (a) Ohshita, J.; Nodono, M.; Watanabe, T.; Ueno, Y.; Kunai, A.;
Harima, Y.; Yamashita, K. J. Organomet. Chem. 1998, 553, 487−491.
(b) Ohshita, J.; Kai, H.; Takata, A.; Iida, T.; Kunai, A.; Ohta, N.;
Komaguchi, K.; Shiotani, M.; Adachi, A.; Sakamaki, K.; Okita, K.
Organometallics 2001, 20, 4800−4805. (c) Ohshita, J.; Nodono, M.;
Kai, H.; Watanabe, T.; Kunai, A.; Komaguchi, K.; Shiotani, M.; Adachi,
A.; Okita, K.; Harima, Y.; Yamashita, K.; Ishikawa, M. Organometallics
1999, 18, 1453−1459.
Figure 6. Plots of ratios of nitrobenzene/DTG unit vs intensity ratios
for DTO-Si and DTGH.
responded more sensitively than DTGH. It seems likely that
DTGO-Si interacted with nitrobenzene more efficiently by
capturing it in the accumulated DTG units.
CONCLUSIONS
■
In summary, we prepared DTG dichlorides in moderate to good
yields and explored their usefulness as precursors of variously
Ge-substituted DTGs. They readily undergo reduction and
nucleophilic substitution to provide new DTG derivatives,
including hydro-, alkyl-, and aryl-substututed DTGs. The optical
and electrochemical properties of these compounds showed
that their electronic states could be finely controlled by the
Ge substitution. DTG-containing cyclotetragermoxanes were also
prepared by hydrolytic condensation of the dichlorides. It was
found that one of the germoxanes showed sensing properties
in the solid state toward a nitrobenzene vapor, with respect to
the PL spectra. The high DTG accumulation in this system is
anticipated to provide potentials of optoelectronic applications of
these compounds.
(6) Ohshita, J.; Murakami, K.; Tanaka, D.; Ooyama, Y.; Mizumo, T.;
Kobayashi, N.; Higashimura, H.; Nakanishi, T.; Hasegawa, Y.
Organometallics 2014, 33, 517−521.
(7) Ohshita, J.; Lee, K.-H.; Kimura, K.; Kunai, A. Organometallics
2004, 23, 5622−5625.
(8) (a) Usta, H.; Lu, G.; Facchetti, A.; Marks, T. J. J. Am. Chem. Soc.
2006, 128, 9034−9035. (b) Lu, G.; Usta, H.; Risko, C.; Wang, L.;
Facchetti, A.; Ratner, M. A.; Marks, T. J. J. Am. Chem. Soc. 2008, 130,
7670−7685. (c) Liao, L.; Dai, L.; Smith, A.; Durstock, M.; Lu, J.; Ding,
J.; Tao, Y. Macromolecules 2007, 40, 9406−9412. (d) Scharber, M. C.;
Koppe, M.; Gao, J.; Cordella, F.; Loi, M. A.; Denk, P.; Morana, M.;
Egelhaaf, H.-J.; Forberich, K.; Dennler, G.; Gaudiana, R.; Waller, D.;
Zhu, Z.; Shi, X.; Brabec, C. J. Adv. Mater. 2010, 22, 367−370. (e) Hou,
J.; Chen, H.-Y.; Zhang, S.; Li, G.; Yang, Y. J. Am. Chem. Soc. 2008, 130,
16144−16145. (f) Ohshita, J. Macromol. Chem. Phys. 2009, 210,
1360−1370.
(9) Ohshita, J.; Hwang, Y.-M.; Mizumo, T.; Yoshida, H.; Ooyama, Y.;
Harima, Y.; Kunugi, Y. Organometallics 2011, 30, 3233−3236.
(10) Tanaka, D.; Ohshita, J.; Ooyama, Y.; Kobayashi, N.;
Higashimura, H.; Nakanishi, T.; Hasegawa, Y. Organometallics 2013,
32, 4136−4141.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the ACS
■
S
Experimental details and 1H and 13C NMR spectra of the
presently prepared DTG derivatives, CVs, and HOMO
and LUMO profiles of DTGH, DTGMe, DTGPh, and
DTGPhF, derived from quantum chemical simulation
X-ray crystallographic data for DTGH (CIF)
X-ray crystallographic studies for DTGO-Et (CIF)
Optimized geometry of DTGH (MOL)
E
Organometallics XXXX, XXX, XXX−XXX