capability of the dendrimers whilst the introduction of a
t
further BOC group, and the mixing of the functionalities on
each component dendron (16), inhibits organogelation under
these conditions. In conclusion, we report the first synthesis of
two analogous single generation series of polyamide
dendrimers with systematically varying surface functionality.
Remarkably, the number, type and position of the surface
groups control the ability of these achiral dendrimers to gel a
range of common organic solvents. Further work will
characterise the gel structures and gelation mechanisms.
We thank the Royal Society for an Industry Fellowship
(SR), Unilever for financial support and Allan Mills for help
with mass spectrometry.
Notes and references
1 Recent reviews: (a) M. H. Stenzel, Chem. Commun., 2008, 3486;
(b) D. Fournier, R. Hoogenboom and U. S. Schubert, Chem. Soc.
Rev., 2007, 36, 1369; (c) C. Tsitsilianis, Macromol. Eng., 2007, 2,
839; (d) W. A. Braunecker and K. Matyjaszewski, Prog. Polym.
Sci., 2007, 32, 93.
2 For example: (a) I. Bannister, N. C. Billingham, S. P. Armes,
S. P. Rannard and P. Findlay, Macromolecules, 2006, 39, 7483;
(b) N. O’Brien, A. McKee, D. C. Sherrington, A. T. Slark and
A. Titterton, Polymer, 2000, 41, 6027; (c) S. Graham,
S. P. Rannard, P. A. G. Cormack and D. C. Sherrington,
J. Mater. Chem., 2007, 17, 545.
3 Recent reviews: (a) H. R. Kricheldorf, Macromol. Rapid Commun.,
2007, 28, 1839; (b) B. Voit, J. Polym. Sci., Part A: Polym. Chem.,
2005, 43, 2679.
4 B. Zhishan and A. D. Schluter, Chem. Commun., 2003, 2354.
¨
5 For example: F. Wang, A. B. Kon and R. D. Rauh, Macro-
molecules, 2000, 33, 5300.
6 For example: R. B. Kolhatkar, K. M. Kitchens, P. W. Swaan and
H. Ghandehari, Bioconjugate Chem., 2007, 18, 2054.
7 R. Matmour and Y. Gnanou, J. Am. Chem. Soc., 2008, 130, 1350.
8 S. M. Grayson and J. M. J. Frechet, Chem. Rev., 2001, 101, 3819.
´
9 For example: (a) C. Nilsson, E. Malmstrom, M. Johansson and
¨
S. M. Trey, J. Polym. Sci., Part A: Polym. Chem., 2009, 47, 589;
(b) B. Klajnert, D. Appelhans, H. Komber, N. Morgner,
S. Schwarz, S. Richter, B. Brutschy, M. Ionov, A. K. Tonkikh,
M. Bryszewska and B. Voit, Chem.–Eur. J., 2008, 14, 7030;
(c) W. J. Mitchell, N. Kopidakis, G. Rumbles, D. S. Ginley and
S. E. Shaheen, J. Mater. Chem., 2005, 15, 4518.
10 (a) C. J. Hawker and J. M. J. Fre
114, 8405; (b) C. J. Hawker and J. M. J. Fre
1990, 23, 4726.
´
chet, J. Am. Chem. Soc., 1992,
Fig. 2 Polyamide dendrimers with controlled and systematically
´
chet, Macromolecules,
varying surface functional groups.
11 (a) V. A. Ashootosh, C. Yangbin and S. Thayumanavanz, New J.
Chem., 2007, 31, 1052; (b) T. Glauser, C. M. Stancik, M. Mller,
S. Voytek, A. P. Gast and J. L. Hedrick, Macromolecules, 2002, 35,
5774; (c) M. B. Steffensen and E. E. Simanek, Angew. Chem., Int.
Organogelation has been widely reported for chiral, peptide
and achiral dendrimers.13 All structures within this study are
achiral and the self-assembly is related directly to surface
functionality. The inability of 19 and 21 to form organogels
is interesting as these materials are analogous with 18 and 17,
respectively. 19 and 18 (highlighted) have six EH groups,
identical polyamide core structures and similar molecular
weights (18 = 1543 Da; 19 = 1116 Da). The structures of
17 and 21 (highlighted) have greater similarity: four EH and
two tBOC surface groups, identical polyamide cores and
similar molecular weights (17 = 1491 Da; 21 = 1206 Da).
The dendrimers exhibiting organogelation possess
secondary amides (18 and 17) whereas 19 and 21 comprise
tertiary amides and are therefore less able to hydrogen bond
Ed., 2004, 43, 5177; (d) R. Al-Hellani and A. D. Schluter, Helv.
¨
Chim. Acta, 2006, 89, 2745; (e) G. R. Newkome, H. J. Kim,
C. N. Moorefield, H. Maddi and K. S. Yoo, Macromolecules,
2003, 36, 4345; (f) K. Yoon, P. Goyal and M. Weck, Org. Lett.,
2007, 9, 2051; (g) P. Antoni, Y. Hed, A. Nordberg, D. Nystrom,
H. von Holst, A. Hult and M. Malkoch, Angew. Chem., Int. Ed.,
2009, 48, 2126.
12 (a) S. P. Rannard and N. J. Davis, J. Am. Chem. Soc., 2000, 12,
11729; (b) S. Rannard, N. Davis and H. McFarland, Polym. Int.,
2000, 49, 1002; (c) S. P. Rannard and N. J. Davis, Org. Lett., 2000,
2, 2117; (d) S. P. Rannard and N. J. Davis, Org. Lett., 1999, 1, 933;
(e) W. J. Feast, S. P. Rannard and A. Stoddart, Macromolecules,
2003, 36, 9704.
13 (a) A. R. Hirst and D. K. Smith, Org. Biomol. Chem., 2004, 2,
2965; (b) B. Romagnoli, P. R. Ashton, L. M. Harwood, D. Philp,
D. W. Price, M. H. Smith, X. Melanja and W. Hayes, Tetrahedron,
2003, 59, 3975.
t
through the periphery. The introduction of just two BOC
groups into 18, to form 17, significantly disrupts the gelling
ꢀc
This journal is The Royal Society of Chemistry 2009
Chem. Commun., 2009, 3095–3097 | 3097