Molecules 2019, 24, 4261
11 of 12
14.
M
ándity, I.M.; Fülöp, F. An overview of peptide and peptoid foldamers in medicinal chemistry. Expert Opin.
15. Dohm, M.T.; Kapoor, R.; Barron, A.E. Peptoids: Bio-inspired polymers as potential pharmaceuticals.
16. Zuckermann, R.N.; Kodadek, T. Peptoids as potential therapeutics. Curr. Opin. Mol. 2009, 11, 299–307.
17. Sun, J.; Zucherman, R.N. Peptoid Polymers: A Highly Designable Bioinspired Material. Acs Nano 2013, 7,
18. Luo, Y.; Song, Y.; Wang, M.; Jian, T.; Ding, S.; Mu, P.; Liao, Z.; Shi, Q.; Cai, X.; Jin, H.; et al. Bioinspired
Peptoid Nanotubes for Targeted Tumor Cell Imaging and Chemo-Photodynamic Therapy. Small 2019, 15,
19. Battigelli, A. Design and preparation of organic nanomaterials using self-assembled peptoids. Adv. Sci. 2019
,
20. Sun, J.; Li, Z. Peptoid applications in biomedicine and nanotechnology (Chapter 7). In Peptide Applications
in Biomedicine, Biotechnology and Bioengineering; Koutsopoulos, S., Ed.; Woodhead: Duxford, UK, 2018;
pp. 183–213.
21. Schneider, J.A.; Craven, T.W.; Kasper, A.C.; Yun, C.; Haugbro, M.; Briggs, E.M.; Svetlov, V.; Nudler, E.;
Knaut, H.; Bonneau, R.; et al. Design of Peptoid-peptide Macrocycles to Inhibit the β-catenin TCF Interaction
in Prostate Cancer. Nat. Commun. 2018, 9, 4396. [CrossRef]
22. Olsen, C.A.; Montero, A.; Leman, L.J.; Ghadiri, M.R. Macrocyclic Peptoid–Peptide Hybrids as Inhibitors of
Class I Histone Deacetylases. Acs Med. Chem. Lett. 2012, 3, 749–753. [CrossRef] [PubMed]
23. Stawikowski, M.J. Peptoids and peptide-peptoid hybrid biopolymers as peptidomimetics. Methods Mol. Biol.
24. Patch, J.A.; Kirshenbaum, K.; Seurynck, S.L.; Zuckermann, R.N.; Barron, A.E. The Many Roles of Peptoids in
Drug Discovery. In Pseudopeptides in Drug Development; Nielsen, P.E., Ed.; Wiley-VCH: Weinheim, Germany,
2004; pp. 1–31.
25. Culf, A.S.; Ouellette, R.J. Solid-Phase Synthesis of N-Substituted Glycine Oligomers (
α-Peptoids) and
26. Seo, J.; Lee, B.-C.; Zuckermann, R.N. Peptoids: Synthesis, Characterization, and Nanostructures.
Compr. Biomater. 2011, 2, 53–76.
27. Tran, H.; Gael, S.L.; Connolly, M.D.; Zuckermann, R.N. Solid-phase submonomer synthesis of peptoid
polymers and their self-assembly into highly-ordered nanosheets. J. Vis. Exp. 2011, 57, e3373. [CrossRef]
28. Webster, A.M.; Cobb, S.L. Recent Advances in the Synthesis of Peptoid Macrocycles. Chemistry 2018, 24,
29. Barlos, K.; Gatos, D.; Kallitsis, J.; Papaphotiu, G.; Sotiriu, P.; Wenqing, Y.; Schiifer, W. Darstellung geschützter
peptid-fragmente unter einsatz substituierter triphenylmethyl-harze. Telrahedron Lett. 1989, 30, 3943–3946.
30. Lee, B.-C.; Zuckermann, R.N.; Dill, K.A. Folding a Nonbiological Polymer into a Compact Multihelical
Structure. J. Am.Chem. Soc. 2005, 127, 10999–11009. [CrossRef]
31. Ondetti, M.A.; Rubin, B.; Cushman, D.W. Design of specific inhibitors of angiotensin-converting enzyme:
New class of orally active antihypertensive agents. Science 1977, 196, 441–444. [CrossRef]
32. Odaka, C.; Mizuochi, T. Angiotensin-converting enzyme inhibitor captopril prevents activation-induced
apoptosis by interfering with T cell activation signals. Clin. Exp. Immunol. 2000, 121, 515–522. [CrossRef]
33. Llorens, C.; Gacel, G.; Swerts, J.P.; Perdrisot, R.; Fournié-Zaluski, M.C.; Schwartz, J.C.; Roques, B.P.
Rational design of enkephalinase inhibitors: Substrate specificity of enkephalinase studied from inhibitory
potency of various dipeptides. Biochem. Biophys. Res. Commun. 1980, 96, 1710–1716. [CrossRef]
34. Kouvaris, J.R.; Kouloulias, V.E.; Vlahos, L.J. Amifostine: The first selective-target and broad-spectrum
35. Behrendt, R.; White, P.; Offer, J. Advances in Fmoc solid-phase peptide synthesis. J. Pept. Sci. 2016, 22, 4–27.
36. Gao, Y.; Kodadek, T. Synthesis, Screening and Hit Optimization of Stereochemically Diverse Combinatorial
Libraries of Peptide Tertiary Amides. Chem. Biol. 2013, 20, 360–369.
37. Suwal, S.; Kodadek, T. Solid-phase synthesis of peptoid-like oligomers containing diverse diketopiperazine
units. Org. Biomol. Chem. 2014, 12, 5831–5834. [CrossRef]