X. Han et al. / Tetrahedron Letters 42 (2001) 5837–5839
5839
tures dramatically reduces both the overall cost of the
reagent as well as the hazardous waste disposal of
organotin residues. Finally, the iodostannatrane can be
readily converted to reagents useful in Stille cross-cou-
pling reactions in addition to an extremely water-solu-
ble tin hydride which, with the addition of a
stereocenter, could conceivably be utilized as a chiral
hydride source.
N.; Hughes, D. L.; Reider, P. J. Org. Lett. 2000, 2, 1081.
7. Smith, R. A.; Coffman, K. J. Synth. Commun. 1982, 12,
801.
8. Huivila, H. G.; Dixon, J. E.; Maxfield, P. L.; Scarpa, N.
M.; Topka, T. M.; Tsai, K. H.; Wursthorn, K. R. J.
Organomet. Chem. 1975, 86, 89.
9. Cochran, J. C.; William, L. E.; Bronk, B. S.; Calhoun, J.
C.; Fassberg, J.; Clark, K. G. Organometallics 1989, 8,
8
04.
0. van Tamelen, E. E.; Dewey, R. S. J. Am. Chem. Soc.
961, 83, 3729.
1. A solid residue (5–10%, mp 104–106°C) was left in the
still pot during distillation corresponding to a polymeric
intermolecularly coordinated stannatrane.
2. (a) Jousseaume, B.; Villeneuve, P. J. Chem. Soc., Chem.
Commun. 1987, 513; (b) Jastrzebski, J. T. B. H.;
Boersma, J.; Esch, P. M.; van Koten, G. Organometallics
1
1
Acknowledgements
1
The authors gratefully acknowledge Dr. Paul Robinson
of Southern Illinois University at Carbondale for per-
forming the X-ray crystallographic work. We also
thank the Hazardous Waste Research and Information
Center (HWRIC), Champaign, IL for funding this
research.
1
1991, 10, 930.
1
3. Crystallographic data (excluding structure factors) for
the structures in this paper have been deposited with the
Cambridge Crystallographic Data Centre as supplemen-
tary publication number CCDC 161014. Copies of the
data can be obtained, free of charge, on application to
CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax:
References
1
. For recent reviews of all 3 reactions see: (a) Suzuki, A. J.
Organomet. Chem. 1999, 576, 147; (b) Losterzo, C. Syn.
Lett. 1999, 41, 1704; (c) Stanforth, S. Tetrahedron 1998,
4, 263; (d) Farina, V.; Krishnamurthy, V.; Scott, W. J.
Org. React. 1997, 50, 1; (e) Miyaura, N.; Suzuki, A.
Chem. Rev. 1995, 95, 2457.
. Pereyre, M.; Quintard, J.-P.; Rahm, A. Tin in Organic
Synthesis; Butterworths: London, 1987; p. 7.
. (a) Tzschach, A.; P o¨ nicke, L.; Korecz, L.; Burger, K. J.
Organomet. Chem. 1973, 59, 199–206; (b) Jurkschat, K.;
Tzchach, A. J. Organomet. Chem. 1984, 272, C13; (c)
+
44 (0) 1223-336033 or e-mail: deposit@ccdc.cam.
ac.uk].
5
1
4. CRC Handbook of Chemistry and Physics 60th Ed.;
Weast, R. C., Ed.; CRC Press: Boca Raton, 1979; F-214.
5. Iodide 1 can also be converted to reagents for Stille
cross-coupling reactions which then readily undergo the
cross-coupling processes. Yields shown are not opti-
mized. The Stille reactions shown were both complete in
less than 3 h.
1
2
3
1
6. (a) Light, J.; Breslow, R. Tetrahedron Lett. 1990, 31,
Jurkschat, K.; Tzchach, A.; Meunier-Piret, J. J.
Organomet. Chem. 1986, 315, 45.
. Casado, A. L.; Espinet, P. J. Am. Chem. Soc. 1998, 120,
2
957; (b) See also: Rai, R.; Collum, D. B. Tetrahedron
Lett. 1994, 35, 6221.
17. LiAlH , NaBH , and DIBAL-H were also successful in
4
8
978 and references cited therein.
. (a) Curran, D. P.; Hoshino, M. J. Org. Chem. 1996, 61,
480; (b) Hoshino, M.; Degenkolb, P.; Curran, D. P. J.
4
4
5
converting 1 into 4 in good to excellent yields. However,
these methods afford a hydride which decomposes
rapidly upon standing even upon using the phosphate
buffer work-up. The reason for this rapid decomposition
is currently unknown.
6
Org. Chem. 1997, 62, 8341; (c) Curran, D. P.; Hadida, S.;
Kim, S.-Y.; Luo, Z. J. Am. Chem. Soc. 1999, 121, 6607.
. (a) Vedejs, E.; Haight, A. R.; Moss, W. O. J. Am. Chem.
Soc. 1992, 114, 6556; (b) Jensen, M. S.; Yang, C.; Hsaio,
6
18. Vedejs, E.; Duncan, S. M.; Haight, A. R. J. Org. Chem.
1993, 58, 3046.
Y.; Rivera, N.; Wells, K. M.; Chung, J. Y. L; Yasuda,
.