Angewandte Chemie International Edition
10.1002/anie.201809813
COMMUNICATION
reaction treatment and can only be tracked in situ. Moreover,
solid@MOF improves reaction efficiency by >28-fold as
compared to solid-only or MOF-only platforms, highlighting that
the interfacial cavities present in solid@MOF is the origin behind
its superior reaction performance. Such solid@MOF system
tackles
the
long-standing
bottleneck
in
gas-liquid
reaction/monitoring by enriching immiscible reactants locally
without requiring elevated temperature/pressure operations.
Together with its high versatility to integrate with other functional
materials, we envisage our solid@MOF strategy as a cornerstone
to
realize
efficient
and
ambient-operated
fluid-fluid
reactions/processes critical in diverse fields including chemistry,
heterogeneous catalysis, greenhouse gases removal and gas-to-
fuel conversions.
Acknowledgements
X.Y.L. thanks the financial supports from Singapore Ministry of
Education, Tier 1 (RG21/16) and Tier 2 (MOE2016-T2-1-043)
grants. H.K.L. and C.L.L. thank scholarship support from A*STAR,
Singapore. C.S.L.K. and G.C.P-Q acknowledge scholarship
support from Nanyang Technological University, Singapore. We
thank Mr. Poh Chong Lim, A*STAR, for XRD analysis.
Figure 4. (A) Aniline extinction spectra at predefined timings in presence of
Ag@ZIF. Inset is a TEM image of our core-shell Ag@ZIF platform. (B) Changes
to aniline’s C/C under prolonged CO exposure. Blank refers to absence of any
0 2
nanoparticles. (C) Mass of aniline consumed per unit mass of ZIF in Ag@ZIF
and ZIF-only platforms. (D) Mass of aniline consumed per unit mass of ZIF and
Keywords: gas-liquid reaction • metal-organic framework •
molecular concentration effect • reaction monitoring • surface-
enhanced Raman scattering
2
interfacial area in Ag@ZIF and SiO @ZIF systems.
[
[
[
[
1] J. Xiong, C. E. Bauer, Annu. Rev. Plant Biol. 2002, 53, 503.
2] H. J. Philippe, Physiol. 2014, 592, 453.
-1
platform (k = 2.4 M ms ; Figure 4B). These observations highlight
the enhanced gas-liquid reaction in Ag@ZIF is primarily due to
the presence of interfacial cavities rather than intrinsic ZIF pores.
Our strategy building on solid@MOF’s interfacial cavities to
promote gas-liquid reaction is also easily extended to other
functional material. As a proof of concept, we synthesize
3] R. Franke, D. Selent, A. Börner, Chem. Rev. 2012, 112, 5675.
4] Prabhansu, M. K. Karmakar, P. Chandra, P. K. Chatterjee, J. Environ. Chem.
Eng. 2015, 3, 689.
[5] Z. Lei, C. Dai, B. Chen, Chem. Rev. 2014, 114, 1289.
[
6] M. Brzozowski, M. O’Brien, S. V. Ley, A. Polyzos, Acc. Chem. Res. 2015,
8, 349.
7] a) M. Wang, A. S. Joel, C. Ramshaw, D. Eimer, N. M. Musa, Appl. Energy
015, 158, 275; b) J. Huang, F. Cheng, B. P. Binks, H. Yang, J. Am. Chem.
4
[
SiO
to identical reaction procedures. Using aniline’s absorption peak
at 234 nm, SiO @ZIF demonstrates a reaction efficiency of 20%
Figure S13) at 300 min, which is also ~3-fold higher compared to
2
@ZIF (ZIF thickness, 14±4 nm; Figure S12) and subject them
2
Soc. 2015, 137, 15015.
2
[
8] S. L. Peterson, S. M. Stucka, C. Dinsmore, J. Org. Lett. 2010, 12, 1340.
9] a) B. Wang, A. P. Côté, H. Furukawa, M. O’Keeffe, O. M. Yaghi, Nature
2008, 453, 207; b) X. Xu, Z. Zhang, X. Wang, Adv. Mater. 2015, 27, 5365;
c) J. Zhuang, C.-H. Kuo, L.-Y. Chou, D.-Y. Liu, E. Weerapana, C.-K. Tsung,
ACS Nano 2014, 8, 2812.
(
[
2
control SiO -only and blank systems (<7% efficiency). This again
implies negligible contribution from the encapsulated solid to the
decrease in aniline concentration. We further normalize the
[10] a) H. K. Lee, Y. H. Lee, J. V. Morabito, Y. Liu, C. S. L. Koh, I. Y. Phang, S.
Pedireddy, X. Han, L.-Y. Chou, C.-K. Tsung, X. Y. Ling, J. Am. Chem. Soc.
aniline consumption in both Ag@ZIF and SiO
interfacial area to exemplify that our strategy is independent on
the nature of encapsulated solid. Both SiO @ZIF and Ag@ZIF
platforms exhibit similar aniline consumption of ~90.9 and 99.7
area-2, respectively (Figure 4D;
2
@ZIF against
2
017, 139, 11513; b) H. Kobayashi, Y. Mitsuka, H. Kitagawa, Inorg. Chem.
016, 55, 15, 7301.
2
2
[11] Q. Yajing, H. Yongjun, X. Min, X. Da, G. Huaimin, J. Raman Spectrosc.
011, 42, 1287.
mganiline.mgZIF-1.µminterfacial
2
Supporting Text 2). This is a direct evidence that the interfacial
cavities between MOF and any solid materials is the key factor to
achieve high-performance gas-liquid reaction. Our solid@MOF
strategy is versatile and can be potentially integrated with many
functional materials, such as solid catalyst, to promote diverse
fluid-fluid reactions.
[12] V. Fawcett; D. A. Long, J. Raman Spectrosc. 1975, 3, 263.
[13] a) N. A. A. A, R. K. Kampara, P.K, R., B.G, J. Appl. Surf. Sci. 2018, 449,
244; b) D. Fairen-Jimenez, S. A. Moggach, M. T. Wharmby, P. A. Wright,
S. Parsons, T. Düren, J. Am. Chem. Soc. 2011, 133, 8900; c) M. R. Ryder,
B. Civalleri, T. D. Bennett, S. Henke, S. Rudić, G. Cinque, F. Fernandez-
Alonso, J.-C. Tan, Phys. Rev. Lett. 2014, 113, 215502.d) C.-H. Kuo, Y.
Tang, L.-Y. Chou, B. T. Sneed, C. N. Brodsky, Z. Zhao, C.-K. Tsung, J. Am.
Chem. Soc. 2012, 134, 14345.
In conclusion, we drive an inert gas-liquid reaction between
2
aniline and CO at ambient conditions and realize its in situ
[
14] a) F. Inagaki, C. Matsumoto, T. Iwata, C. Mukai, J. Am. Chem. Soc. 2017,
139, 4639; b) R. W. Flaig, T. M. Osborn Popp, A. M. Fracaroli, E. A. Kapustin,
M. J. Kalmutzki, R. M. Altamimi, F. Fathieh, J. A. Reimer, O. M. Yaghi, J.
Am. Chem. Soc. 2017, 139, 12125; c) T. Sakakura, J.-C. Choi, H. Yasuda,
Chem. Rev. 2007, 107, 2365.
reaction monitoring by selectively concentrating these biphasic
molecules in the interfacial nanocavities of solid@MOF platform.
Experimental and DFT SERS investigations jointly highlight the
formation of phenylcarbamic acid in our model reaction. Notably,
such molecular-level identification of phenylcarbamic acid is
unprecedented because this chemical species is unstable to post-
This article is protected by copyright. All rights reserved.