serve as precursors to γ-lactams,9 but in some cases γ-lactams
can be transformed into the corresponding γ-amino acid.10
Furthermore, the γ-butyrolactam can be converted to
pyrrolidine by reduction.11 Pyrrolidines are ubiquitous struc-
tural motifs in drugs and potential drug candidates such as
antidepressants,12 antimicrobials,13 antihypertensives,14 an-
tiarthritics,15 antivirals,16 and antinociceptive agents.17 Sin-
garam and co-workers recently reported the facile reduction
of N-alkyl lactams to the corresponding pyrrolidines in
excellent yields using lithium aminoborohydrides.18
and has attracted our attention recently.20 It has one carbon-
carbon double bond with (Z)-configuration, two halogen
atoms, and two carbonyl groups possessing different reactiv-
ity. Surprisingly, this C-4 building block is not often used
in organic synthesis, presumably for reasons of its many
reactive sites, poor stability under basic conditions, and
assumed difficulty in the selective manipulation of its halogen
atoms. Therefore, we sought to develop a manifold for
selective manipulation of this densely functionalized mol-
ecule.
It has long been known that 1 and 2 (mucobromic acid)
react with hydrazine (3) or arylhydrazines 4 to form
pyridazinones 5 in acetic acid medium (Figure 1).21 This
Considering the close relationship among γ-lactams,
γ-amino acids, and pyrrolidine and their potential benefit in
drug discovery and development, we set out to develop a
method for preparing highly functionalized R,â-unsaturated
γ-butyrolactams.19 Mucochloric acid (1, 3,4-dichloro-5-
hydroxy-5H-furan-2-one) is a commercially available and
inexpensive starting material with multiple functional groups
(7) (a) Warner-Lambert; Neurontin (gabapentin). U.S. Patent 4,024,175,
1977. (b) Doyle, M. P.; Hu, W. Chirality 2002, 14, 169. Carpes, M. J. S.;
Correia, C. R. D. Tetrahedron Lett. 2002, 43, 741. Corey, E. J.; Zhang,
F.-Y. Org. Lett. 2000, 2, 4257. (c) Hoekstra, M. S.; Sobieray, D. M.;
Schwindt, M. A.; Mulhern, T. A.; Grote, T. M.; Huckabee, B. K.;
Hendrickson, V. S.; Franklin, L. C.; Granger, E. J.; Karrick, G. L. Org.
Process Res. DeV. 1997, 1, 26.
Figure 1. Condensation of mucohalic acids with hydrazines.
(8) (a) Itoh, K.; Kanemasa, S. J. Am. Chem. Soc. 2002, 124, 13394. (b)
Barnes, D. M.; Ji, J.; Fickes, M. G.; Fitzgerald, M. A.; King, S. A.; Morton,
H. E.; Plagge, F. A.; Preskill, M.; Wagaw, S. H.; Wittenberger, S. J.; Zhang,
J. J. Am. Chem. Soc. 2002, 124, 13097. (c) Anada, M.; Mita, O.; Watanabe,
H.; Kitagaki, S.; Hashimoto, S. Synlett 1999, 1775. (d) Diaz, A.; Siro, J.
G.; Garcia-Navio, J. L.; Vaquero, J. J.; Alvarez-Builla, J. Synthesis 1997,
559. (e) Meyers, A. I.; Snyder, L. J. Org. Chem. 1993, 58, 36. (f) Mulzer,
J.; Zuhse, R.; Schmiechen, R. Angew. Chem., Int. Ed. Engl., 1992, 31, 870.
(g) Goldenthal, E. I. Toxicol. Appl. Pharmacol. 1971, 18, 185.
(9) Denis, J.-N.; Tchertchian, S.; Tomassini, A.; Vallee, Y. Tetrahedron
Lett. 1997, 38, 5503.
(10) (a) Dixon, D. J.; Ley, S. V.; Rodriguez, F. Org. Lett. 2001, 3, 3753.
(b) Forti, L.; Ghelfi, F.; Levizzani, S.; Pagnoni, U. M. Tetrahedron Lett.
1999, 40, 3233. (c) Galeazzi, R.; Mobbili, G.; Orena, M. Tetrahedron:
Asymmetry 1997, 8, 133. (d) Nebois, P.; Greene, A. E. J. Org. Chem. 1996,
61, 5210. (e) Gennari, C.; Pain, G.; Moresca, D. J. Org. Chem. 1995, 60,
6248. (f) Wei, Z.-Y.; Knaus, E. E. Tetrahedron 1994, 50, 5569.
(11) Collins, C. J.; Lanz, M.; Singaram, B. Tetrahedron Lett. 1999, 40,
3673 and references therein.
prompted us to investigate the reactions of 1 or 2 with aniline
or benzylamine in acetic acid, including reductive amination.
The reaction products would be useful as intermediates in
organic synthesis, especially in the synthesis of many
biologically active heterocycles such as substituted 1,5-
dihydro-pyrrol-2-ones,22 other γ-lactams,23 and pyrrolidines.24
Herein we report the first direct reductive amination of
mucochloric acid (1).
The reaction between 1 and benzylamine (6) was selected
initially (Table 1). A 1:1 v/v mixture of dichloromethane
(12) Nagai, Y.; Uno, H.; Umemoto, S. Chem. Pharm. Bull. 1977, 25,
1911.
Table 1. Reductive Amination in Different Solventsa
(13) (a) Ma, Z.; Chu, D. T. W.; Cooper, C. S.; Li, Q.; Fung, A. K. L.;
Wang, S.; Shen, L. L.; Flamm, R. K.; Nilius, A. M.; Alder, J. D.; Meulbroek,
J. A.; Or, Y. S. J. Med. Chem. 1999, 42, 4202. (b) Hong, C. Y.; Kim, Y.
K.; Chang, J. H.; Kim, S. H.; Choi, H.; Nam, D. H.; Kim, Y. Z.; Kwak, J.
H. J. Med. Chem. 1997, 40, 3584.
(14) (a) Hanessian, S.; Claridge, S.; Johnstone, S. J. Org. Chem. 2002,
67, 4261. (b) Das, J.; Floyd, D. M.; Kimball, S. D.; Duff, K. J.; Lago, M.
W.; Krapcho, J.; White, R. E.; Ridgewell, R. E.; Obermeier, M. T.; et al.
J. Med. Chem. 1992, 35, 2610.
entry
solvent
yield (%)b
(15) (a) Lee, D.; Long, S. A.; Murray, J. H.; Adams, J. L.; Nuttall, M.
E.; Nadeau, D. P.; Kikly, K.; Winkler, J. D.; Sung, C.-M.; Ryan, M. D.;
Levy, M. A.; Keller, P. M.; DeWolf, W. E., Jr. J. Med. Chem. 2001, 44,
2015. (b) Chang, A.-C.; Cowan, A.; Takemori, A. E.; Portoghese, P. S. J.
Med. Chem. 1996, 39, 4478.
(16) (a) Andrews, D. M.; Chaignot, H.; Coomber, B. A.; Good, A. C.;
Hind, S. L.; Johnson, M. R.; Jones, P. S.; Mills, G.; Robinson, J. E.;
Skarzynski, T.; Slater, M. J.; Somers, D. O. Org. Lett. 2002, 4, 4479. (b)
Andrews, D. M.; Carey, S. J.; Chaignot, H.; Coomber, B. A.; Gray, N. M.;
Hind, S. L.; Jones, P. S.; Mills, G.; Robinson, J. E.; Slater, M. J. Org. Lett.
2002, 4, 4475.
1
2
3
4
5
6
7
8
1:1 CH2Cl2/HOAc
1,4-dioxane
THF
CH3CN
DCE
CHCl3
CH3NO2
CHCl3
46
48
52
49
68
66
35
76
a Reaction conditions: 1 equiv of 1, 1.1 equiv of 6, 1.5 equiv of
NaBH(OAc)3, 24 h at room temperature. A catalytic amount of HOAc was
used in entries 2-8. The reaction time was not optimized. A reaction time
of 48 h and 1.5 equiv of 6 was used in entry 8. b Products were isolated
and purified by silica gel chromatography and/or crystallization. Isolated
yields are averages of two runs, and products are estimated to be >95%
pure by 1H NMR and elemental analysis. All compounds gave satisfactory
elemental analysis data.
(17) (a) Vecchietti, V.; Clarke, G. D.; Colle, R.; Dondio, G.; Giardina,
G.; Petrone, G.; Sbacchi, M. J. Med. Chem. 1992, 35, 2970. (b) Vecchietti,
V.; Clarke, G. D.; Colle, R.; Giardina, G.; Petrone, G.; Sbacchi, M. J. Med.
Chem. 1991, 34, 2624.
(18) Flaniken, J. M.; Collins, C. J.; Lanz, M.; Singaram, B. Org. Lett.
1999, 1, 799.
(19) Chatani, N.; Kamitani, A.; Murai, S. J. Org. Chem. 2002, 67, 7014.
(20) Zhang, J.; Blazecka, P. G.; Belmont, D.; Davidson, J. G. Org. Lett.
2002, 4, 4559.
554
Org. Lett., Vol. 5, No. 4, 2003