weight uptake of 75 mg g21and total (absolute) H2 uptake of
110 mg g21 (47 g L21) at 70 bar, 77 K]. The theoretical H2
uptake capacity depends on the pore volume of the adsorbent
rather than the enthalpy of adsorption, especially at high
pressures and low temperature. However large binding energy
(15–20 kJ mol21) is required for viable room temperature
storage.32 Adsorbents possessing large binding energy and
high density of binding sites need to be developed to confine
large amounts of H2 molecules for use as a fuel in automotive
applications.
12 H. K. Chae, D. Y. Siberio-Pe´rez, J. Kim, Y.-B. Go, M. Eddaoudi,
A. J. Matzger, M. O’Keeffe and O. M. Yaghi, Nature, 2004, 427,
523.
13 For instance, (1) non-ideality of H2 gas is emphasized under low
temperature and high-pressure conditions, and (2) temperature
gradient effect between a sample cell and a pressure transducer
could bring a huge experimental error since the deviation increases
with an increase in the inverse of measurement temperature. In
other words, even if the experimental value at room temperature
looks reasonable, there is no guarantee that the sorption system
will also work properly at cryogenic conditions.
14 R. Chahine and T. K. Bose, Int. J. Hydrogen Energy, 1994, 19, 161;
H. W. Langmi, A. Walton, M. M. Al-Mamouri, S. R. Johnson,
D. Book, J. D. Speight, P. P. Edwards, I. Gameson, P. A. Anderson
and I. R. Harris, J. Alloys Compd., 2003, 356–357, 710.
15 X. Li, F. Cheng, S. Zhang and J. Chen, J. Power Sources, 2006,
160, 542.
Acknowledgements
We are grateful to Dr Matthias Thommes (Quantachrome)
and Dr Augie F. Venero (VTI Corporation) for valuable
advice and discussions, and to Ms Jun Yang and Mr Qiaowei
Li for samples of MOF-177. We also thank Drs George
Thomas, Jesse Adams, Sunita Satyapal and Carole Read
(DOE) for their valuable input. This work was supported by
the U.S. Department of Energy (DE-FG36-05GO15001 to
OMY and DE-FC36-02AL67619 to MAM).
16 S. Lowell, J. E. Shields, M. A. Thomas and M. Thommes,
Characterization of Porous Solids and Powders: Surface Area, Pore
Size and Density, Kluwer Academic Publishers, Dordrecht, 2004;
J. Keller and R. Staudt, Gas Adsorption Equilibria: Experimental
Methods and Adsorption Isotherms, Springer Science + Business
Media, New York, 2005.
17 R. D. McCarty, J. Hord and H. M. Roder, Selected Properties of
Hydrogen (Engineering Design Data), National Bureau of
Standards, 1981, Monograph 168.
18 Ideal MOF-177 samples do not have any external surface but only
an internal pore system, while actual crystalline samples (1) have
finite size (i.e., sub-millimeter scale), (2) may be partly decom-
posed, (3) contain small amount of guest (mainly water) molecules.
Therefore, it is difficult to conclude which value reflects an actual
system. Considering that estimation of the true density of porous
materials is not easy,19 further consideration is beyond the scope of
this article. However, we cannot fully exclude the possibility
of helium adsorption on the MOF-177 surface. In case the slope
of helium isotherm for the buoyancy correction can be under-
estimated, the Vp at UCLA may be overestimated.
References
1 N. L. Rosi, J. Eckert, M. Eddaoudi, D. T. Vodak, J. Kim,
M. O’Keeffe and O. M. Yaghi, Science, 2003, 300, 1127;
J. L. C. Rowsell, J. Eckert and O. M. Yaghi, J. Am. Chem. Soc.,
2005, 127, 14904.
2 J. L. C. Rowsell, A. R. Millward, K. S. Park and O. M. Yaghi,
J. Am. Chem. Soc., 2004, 126, 5666.
3 J. L. C. Rowsell and O. M. Yaghi, J. Am. Chem. Soc., 2006, 128,
1304.
4 A. G. Wong-Foy, A. J. Matzger and O. M. Yaghi, J. Am. Chem.
Soc., 2006, 128, 3494.
19 K. Murata, K. Kaneko, F. Kokai, K. Takahashi, M. Yudasaka
and S. Iijima, Chem. Phys. Lett., 2000, 331, 14.
20 NIST chemistry webbook (thermophysical properties of fluid
21 S. Sircar, Ind. Eng. Chem. Res., 1999, 38, 3670; A. L. Myers,
J. A. Calles and G. Calleja, Adsorption, 1997, 3, 107.
5 M. Dinca˘, A. Dailly, Y. Liu, C. M. Brown, D. A. Neumann and
J. R. Long, J. Am. Chem. Soc., 2006, 128, 16876.
6 D. N. Dybtsev, H. Chun, S. H. Yoon, D. Kim and K. Kim, J. Am.
Chem. Soc., 2004, 126, 32; S. S. Kaye and J. R. Long, J. Am. Chem.
Soc., 2005, 127, 6506; X. Lin, J. Jia, X. Zhao, K. M. Thomas,
A. J. Blake, G. S. Walker, N. R. Champness, P. Hubberstey and
M. Schro¨der, Angew. Chem., Int. Ed., 2006, 45, 7358.
7 L. Pan, M. B. Sander, X. Huang, J. Li, M. Smith, E. Bittner,
B. Bockrath and J. K. Johnson, J. Am. Chem. Soc., 2004, 126,
1308; B. Kesanli, Y. Cui, M. R. Smith, E. W. Bittner,
B. C. Bockrath and W. Lin, Angew. Chem., Int. Ed., 2005, 44,
72; B. Chen, N. W. Ockwig, A. R. Millward, D. S. Contreras and
O. M. Yaghi, Angew. Chem., Int. Ed., 2005, 44, 4745; H. Kabbour,
T. F. Baumann, J. H. Satcher, Jr., A. Saulnier and C. C. Ahn,
Chem. Mater., 2006, 18, 6085; P. M. Forster, J. Eckert,
B. D. Heiken, J. B. Parise, J. W. Yoon, S. H. Jhung, J.-S. Chang
and A. K. Cheetham, J. Am. Chem. Soc., 2006, 128, 16846; D. Sun,
S. Ma, Y. Ke, D. J. Collins and H.-C. Zhou, J. Am. Chem. Soc.,
2006, 128, 3896; S. Ma, D. Sun, M. Ambrogio, J. A. Fillinger,
S. Parkin and H.-C. Zhou, J. Am. Chem. Soc., 2007, 129, 1858.
8 M. Latroche, S. Surble´, C. Serre, C. Mellot-Draznieks,
P. L. Llewellyn, J.-H. Lee, J.-S. Chang, S. H. Jhung and
G. Fe´rey, Angew. Chem., Int. Ed., 2006, 45, 8227; A. Dailly,
J. J. Vajo and C. C. Ahn, J. Phys. Chem. B, 2006, 110, 1099; J. Jia,
X. Lin, C. Wilson, A. J. Blake, N. R. Champness, P. Hubberstey,
G. Walker, E. J. Cussena and M. Schro¨der, Chem. Commun., 2007,
840.
22 F. Rouquerol, J. Rouquerol and K. Sing, Adsorption by Powders
and Porous Solids, Academic Press, London, 1999.
23 H. Frost, T. Du¨ren and R. Snurr, J. Phys. Chem. B, 2006, 110, 9565.
24 K. Murata, M. El-Merraoui and K. Kaneko, J. Chem. Phys., 2001,
114, 4196.
25 A. V. Neimark and P. I. Ravikovitch, Langmuir, 1997, 13, 5148.
26 Actual pore volume after H2 adsorption may be smaller than the
accessible pore volume, Vpore. However, in the Gibbs definition of
dividing surface, the adsorbed phase is a surface therefore it does
not have a volume. Considering this, in terms of H2 storage, the
important factor is not the thickness of the adsorbed layer but the
number of H2 molecules in the pores (which includes the bulk
region), we believe that rough estimation of absolute adsorbed
amounts is an important issue. However, this is beyond the scope
of this paper.
27 The BET method is still widely used for determining the surface
area of micro–mesoporous materials. It is also recognized that the
BET area should not be accepted as the true internal area of
microporous solids having pores of molecular dimensions, such as
in MOF materials. In this case, the value obtained should be
regarded as an apparent or equivalent surface area.
28 A. Malek and S. Farooq, AIChE J., 1996, 42, 3191.
29 L. Czepirski and J. Jagiełło, Chem. Eng. Sci., 1989, 44, 797;
J. Jagiello, T. J. Bandosz, K. Putyera and J. A. Schwarz, J. Chem.
Eng. Data, 1995, 40, 1288.
30 Strictly speaking, the heat of adsorption needs to be estimated
based on the absolute adsorbed amount.31 However, since the bulk
density of H2 under experimental conditions is small, we assumed
9 H. Li, M. Eddaoudi, M. O’Keeffe and O. M. Yaghi, Nature, 1999,
402, 276; O. M. Yaghi, M. O’Keeffe, N. W. Ockwig, H. K. Chae,
M. Eddaoudi and J. Kim, Nature, 2003, 423, 705.
10 J. L. C. Rowsell and O. M. Yaghi, Angew. Chem., Int. Ed., 2005,
44, 4670.
11 Energy Efficiency and Renewable Energy Hydrogen, Fuel Cells
gov/hydrogenandfuelcells/.
Nex # Nabs
.
31 M. M. K. Salem, P. Braeuer, M. v. Szombathely, M. Heuchel,
P. Harting, K. Quitzsch and M. Jaroniec, Langmuir, 1998, 14,
3376.
This journal is ß The Royal Society of Chemistry 2007
J. Mater. Chem., 2007, 17, 3197–3204 | 3203