J. D. Ochocki et al. / Bioorg. Med. Chem. Lett. 21 (2011) 4998–5001
5001
fers by only approximately 0.5 units, indicating the addition of the
alkyne is a rather benign change to the hydrophobicity of the pep-
tide (see Figure S4). However, the presence of the alkyne allows for
facile visualization via click-mediated fluorescent labeling when
desired. Furthermore, the alkyne group may be used in a variety
of click reactions beyond fluorophore attachment. This approach
should be quite useful for a variety of studies of cell penetrating
molecules.
Acknowledgments
The authors would like to thank Professor G.B. for use of his
automated peptide synthesizer and lyophilizer. We would also like
to acknowledge the assistance of the Flow Cytometry Core Facility
of the Masonic Cancer Center, a comprehensive cancer center des-
ignated by the National Cancer Institute, supported in part by P30
CA77598. This work was supported by the National Institutes of
Health (GM 58442).
Figure 4. Flow cytometry analysis of peptides 1 and 2 incubated for 1 h at various
concentrations. Each bar represents the geometric mean fluorescence of 10,000
cells, with the background fluorescence subtracted from each sample. Each
experiment was performed in at least triplicate, expressed as the geometric
mean standard deviation.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
In previous work, we have shown that peptide sequences con-
taining a geranylgeranyl group are efficiently taken into cells in
an energy-independent manner, regardless of positive charge in
the sequence. The findings reported here demonstrate that the
presence of the hydrophobic fluorophore 5-Fam in such peptides
has minimal effect on their cell penetrating ability, further under-
scoring the importance of the isoprenoid moiety. This information
may be useful for applications utilizing cell-penetrating peptides to
deliver cargo across membranes. Using the smallest molecule for a
CPP has the benefit of facile synthesis as well as minimum distur-
bance of the cell during cargo delivery. The non-endocytotic mech-
anism that functions in the uptake of these peptides may also
prove to be useful since it avoids potential endosomal localiza-
tion/degradation of cargo. For instance, Medintz and coworkers at-
tached a CPP to a quantum dot and a fluorescent protein to study
the internalization of cargo, finding that microinjection of the con-
jugate into cells was necessary to avoid endosomal uptake.25 Final-
ly, we note the novel method for visualizing cell penetrating
peptides described herein. To date, most studies of cell penetrating
peptides and related materials have employed fluorophores linked
to the compounds themselves to report on cellular entry. The
incorporation of bulky, hydrophobic fluorescent groups inevitably
perturbs the chemical and physical properties of the molecules un-
der study and hence complicates structure/function analysis. For
example, the addition of the 5-Fam fluorophore to a lysine residue
alters the calculated partition coefficient (c log P) by 3 units, illus-
trating a large change in the hydrophobic properties of the parent
molecule (Figure S3). The method reported here provides a simple
solution to this problem. The incorporation of a small alkyne-con-
taining moiety into the peptide results in minimal alteration of the
properties of the parent peptide. The c log P value of Lys(5-Fam)
with either an acetylated N-terminus or an N-terminal alkyne dif-
1. Lamango, N. S.; Koikov, L.; Duverna, R.; Abonyo, B. O.; Hubbard, J. B.,
Neurotoxicity Syndromes, Nova Science Publishers, Inc.: 2007; p 37–68.
2. Benetka, W.; Koranda, M.; Eisenhaber, F. Monatsh. Chem. 2006, 137, 1241.
3. Bergo, M. O.; Wahlstrom, A. M.; Fong, L. G.; Young, S. G. Methods Enzymol. 2008,
438, 367.
4. Nguyen, U. T. T.; Goody, R. S.; Alexandrov, K. ChemBioChem 2010, 11, 1194.
5. Lane, K. T.; Beese, L. S. J. Lipid Res. 2006, 47, 681.
6. Long, S. B.; Beese, L. S., Farnesyltransferase Inhib. Cancer. Ther., Humana Press
Inc.: 2001; p 37–48.
7. Casey, P. J. J. Lipid Res. 1992, 33, 1731.
8. Ayral-Kaloustian, S.; Salaski, E. J. Curr. Med. Chem. 2002, 9, 1003.
9. Cortes, J. Clin. Lymphoma 2003, 4, S30.
10. Ohkanda, J.; Knowles, D. B.; Blaskovich, M. A.; Sebti, S. M.; Hamilton, A. D. Curr.
Top. Med. Chem. 2002, 2(3), 303.
11. Blum, R.; Kloog, Y. Drug Resist. Updates 2005, 8, 369.
12. Karp, J. E. Basic Clin. Oncol. 2008, 35, 491.
13. Zhu, K.; Hamilton, A. D.; Sebti, S. M. Curr. Opin. Invest. (Drugs Thomson Curr.
Drugs) 2003, 4, 1428.
14. Brasseur, R.; Divita, G. Biochim. Biophys. Acta, Biomembr. 2010, 1798, 2177.
15. Hansen, M.; Eriste, E.; Langel, U., Peptides as Drugs, Wiley-VCH Verlag GmbH &
Co.: 2009; p 125–143.
16. Lindgren, M.; Langel, U. Methods Mol. Biol. (N. Y., NY, U. S.) 2011, 683, 3.
17. Tuennemann, G.; Cardoso, M. C. IUL Biotechnol. Ser. 2010, 9, 329.
18. Raeaegel, H.; Saeaelik, P.; Hansen, M.; Langel, U.; Pooga, M. J. Controlled Release
2009, 139, 108.
19. Wollack, J. W.; Zeliadt, N. A.; Mullen, D. G.; Amundson, G.; Geier, S.; Falkum, S.;
Wattenberg, E. V.; Barany, G.; Distefano, M. D. J. Am. Chem. Soc. 2009, 131, 7293.
20. Ochocki, J. D.; Igbavboa, U.; Wood, W. G.; Wattenberg, E. V.; Distefano, M. D.
Chem. Biol. Drug Des. 2010, 76, 107.
21. Wollack, J. W.; Zeliadt, N. A.; Ochocki, J. D.; Mullen, D. G.; Barany, G.;
Wattenberg, E. V.; Distefano, M. D. Bioorg. Med. Chem. Lett. 2010, 20, 161.
22. Xue, C. B.; Becker, J. M.; Naider, F. Tetrahedron Lett. 1992, 33, 1435.
23. Adler, J.; Parmryd, I. Cytometry A 2010, 77, 733.
24. Bracha-Drori, K.; Shichrur, K.; Lubetzky, T. C.; Yalovsky, S. Plant Physiol. 2008,
148, 119.
25. Medintz, I. L.; Pons, T.; Delehanty, J. B.; Susumu, K.; Brunel, F. M.; Dawson, P. E.;
Mattoussi, H. Bioconjugate Chem. 2008, 19, 1785.