Vol. 31, No. 9 (2019)
Plant Mediated Green Synthesis, Catalytic Activity and Antibacterial Assay of Silver Nanoparticles 2041
9
1
1
1
1
1
1
1
1
.
A.R. Shahverdi, S. Minaeian, H.R. Shahverdi, H. Jamalifar and A.-A.
Nohi, Process Biochem., 42, 919 (2007);
https://doi.org/10.1016/j.procbio.2007.02.005.
aureaus (13 ± 0.5 mm) and Pseudomonas aeruginosa (14 ±
1.2 mm). Further, it was explained that the antibacterial activity
of silver nanoparticles is concentration dependant and works
for both Gram-positive and Gram-negative bacteria.
0. C. Krishnaraj, E.G. Jagan, S. Rajasekar, P. Selvakumar, P.T. Kalaichelvan
and N. Mohan, Colloids Surf. B: Biointerfaces, 76, 50 (2010);
https://doi.org/10.1016/j.colsurfb.2009.10.008.
1. O.V. Kharissova, H.V.R. Dias, B.I. Kharisov, B.O. Pérez and V.M.J.
Pérez, Trends Biotechnol., 31, 240 (2013);
Conclusion
The synthesis of silver nanoparticles by Vitex negundo
root bark extract is reported via green chemistry approach which
provides efficient, eco-friendly, cost effective ways for the synt-
hesis of metallic nanomaterials. The characterization results
confirmed that the reduction of silver ions to silver nanoparticles
when it was treated with plant extract. This biogenic silver
nanoparticles exhibited excellent catalytic activity for the
formation of 5-substituted 1H-tetrazole in good yields. Finally,
the antibacterial activity profile revealed their potentiality in
biomedical applications.
https://doi.org/10.1016/j.tibtech.2013.01.003.
2. P. Logeswari, S. Silambarasan and J. Abraham, Sci. Iran, 20, 1049
(
2013);
https://doi.org/10.1016/j.scient.2013.05.016.
3. M.N. Nadagouda, N. Iyanna, J. Lalley, C. Han, D.D. Dionysiou and
R.S. Varma, ACS Sustain. Chem. Eng., 2, 1717 (2014);
https://doi.org/10.1021/sc500237k.
4. P.H.M. Hoet, I. Brüske-Hohlfeld and O.V. Salata, J. Nanobiotechnol.,
2, 12 (2004);
https://doi.org/10.1186/1477-3155-2-12.
5. D.A. Selvan, D. Mahendiran, R. Senthil Kumar and A.K. Rahiman, J.
Photochem. Photobiol. B: Biol., 180, 243 (2018);
https://doi.org/10.1016/j.jphotobiol.2018.02.014.
6. C. Dipankar and S. Murugan, Colloids Surf. B: Biointerfaces, 98, 112
ACKNOWLEDGEMENTS
(
2012);
The authors thank to Sri Jayachamarajendra College of
Engineering, Mysore, India and Mr. C.M. Narendra Reddy,
Department of Biotechnology, Dravidian University, Kuppam,
India, for providing instrumentation facilities and antibacterial
activities.
https://doi.org/10.1016/j.colsurfb.2012.04.006.
7. P. Raveendran, J. Fu and S.L. Wallen, J. Am. Chem. Soc., 125, 13940
(2003);
https://doi.org/10.1021/ja029267j.
1
1
8. S. Iravani, Green Chem. 13, 2638 (2011);
https://doi.org/10.1039/C1GC15386B.
9. A.K. Jha, K. Prasad, K. Prasad and A. Kulkarni, Colloids Surf. B:
Biointerfaces, 73, 219 (2009);
CONFLICT OF INTEREST
https://doi.org/10.1016/j.colsurfb.2009.05.018.
0. H.B. Broughton and I.A. Watson, J. Mol. Graphics Modell., 23, 51
(2004);
The authors declare that there is no conflict of interests
regarding the publication of this article.
2
https://doi.org/10.1016/j.jmgm.2004.03.016.
REFERENCES
21. J.M. Thomas and W.J. Thomas, Principles and Practice of Heterogeneous
Catalysis, VCH: Weinheim (1997).
1
.
A.R.Vilchis-Nestor,V. Sánchez-Mendieta, M.A. Camacho-López, R.M.
Gómez- Espinosa,A. Camacho-López and J.A.Arenas-Alatorre, Mater.
Lett., 62, 3103 (2008);
https://doi.org/10.1016/j.matlet.2008.01.138.
M.M. Kumari, J. Jacob and D. Philip, Spectrochim. Acta A. Mol. Biomol.
Spectrosc., 137, 185 (2015);
https://doi.org/ 10.1016/j.saa.2014.08.079.
C. Larue, H. Castillo-Michel, S. Sobanska, L. Cecillon, S. Bureau, V.
Barthes, L. Ouerdane, M. Carriere and G. Sarret, J. Hazard. Mater.,
2
2
2
2
2. R.N. Butler, eds.:A.R. Katritzky, C.W. Rees and E.F.V. Scriven, Compre-
hensive Heterocyclic Chemistry, Pergamon, Oxford, vol. 4 (1996).
4. L.S. Li, J. Hu, W. Yang, A.P. Alivisatos, Nano Lett., 7, 349 (2001);
https://doi.org/10.1021/nl015559r.
2
3
.
.
5. R. Kaur, J. Bariwal, L.G. Voskressensky and E.V. Van der Eycken,
Chem Heterocycl. Comp., 54, 241 (2018);
https://doi.org/10.1007/s10593-018-2259-1.
2
64, 98 (2014);
2
6. M. Reddeppa, R.C. Krishna Reddy, Y.P. Raj and T.S. Rani, Asian J.
Chem., 31, 622 (2019);
https://doi.org/10.1016/j.jhazmat.2013.10.053.
S. Prabhu and E.K. Poulose, Int. Nano Lett., 2, 32 (2012);
https://doi.org/10.1186/2228-5326-2-32.
4
5
6
.
.
.
https://doi.org/10.14233/ajchem.2019.21750.
2
2
7. G. Keerti and K. Padma, Int. J. Drug Dev. Res., 4, 192 (2012).
8. P.M. Subramanian and G.S. Misra, J. Nat. Prod., 42, 540 (1979);
https://doi.org/10.1021/np50005a019.
U.K. Parashar, P.S. Saxena andA. Srivastava, Dig. J. Nanomater. Biostruct.,
4, 159 (2009).
K. Kalishwaralal, V. Deepak, S. Ramkumarpandian, H. Nellaiah and
G. Sangiliyandi, Mater. Lett., 62, 4411 (2008);
https://doi.org/10.1016/j.matlet.2008.06.051.
K. Vijayaraghavan, S.K. Nalini, N.U. Prakash and D. Madhankumar,
Mater. Lett., 75, 33 (2012);
https://doi.org/10.1016/j.matlet.2012.01.083.
A.Ahmad, P. Mukherjee, S. Senapati, D. Mandal, M.I. Khan, R. Kumar
2
9. V.R. Tandon, Indian J. Nat. Prod. Resour., 4, 162 (2005);
http://hdl.handle.net/123456789/8085.
3
3
0. C. Perez, M. Paul and P. Bazerque, Acta Biol. Med. Exp., 15, 113 (1990).
1. I. Ahmad and A.Z. Beg, J. Ethnopharmacol., 74, 113 (2001);
https://doi.org/10.1016/S0378-8741(00)00335-4.
7
8
.
.
3
2. P. Mani, C. Sharma, S. Kumar, S.K. Awasthi, J. Mol. Catal. A: Chem.,
3
92, 150 (2014);
http://dx.doi.org/10.1016/j.molcata.2014.05.008.