2
5
a two stage breakdown of the template included within the cavity.
Acknowledgements
No satisfactory explanation for the presence of a pentacoordinate
We are grateful to the Leverhulme Trust for funding and the
CCLRC for providing access to synchrotron radiation. We thank
Dr David Apperley (EPSRC Solid State NMR Service, University
of Durham) for collecting and deconvoluting the NMR spectra
and Mrs Diane Spencer (University of Wolverhampton) for the
ICP-OES analyses.
Al in Mg0.15–ERI and not in Mg0.25–ERI was obtained from the
TGA. In all MgAPO AFX samples TGA showed a weight loss of ca
◦
5
.4 wt% below 180 C which is attributed to loosely bound water.
The magnitude of the template mass loss corresponds well with the
expected change in mass with increasing methylene chain length.
The template (15.25 wt%) is removed in a two-stage loss between
◦
4
30 and 645 C. These are insufficiently resolved, however, to
permit calculation of the proportion of the template being removed
at each stage.
Combining the results of chemical and thermal analysis with
crystallographic data allows the calculation of the unit cell
contents. So, for example, the magnesioaluminophosphate pre-
Notes and References
1
S. T. Wilson, B. M. Lok, C. A. Messina, T. T. Cannan and E. M.
Flanigen, J. Am. Chem. Soc., 1982, 104, 1146.
2 Ch. Baerlocher, W. M. Meier and D. H. Olson, Atlas of Zeolite
Framework Types, 5th edn, 2001, Elsevier,Amsterdam, also available
at http://www.iza-structure.org/databases/.
pared from a gel containing Mg/P = 0.25 and diquat-4 (Mg0.25
–
3
R. F. Lobo, S. I. Zones and M. E. Davis, J. Inclusion Phenom. Mol.
ERI) may be formulated as |(H O) P O72].
2
2
(C14
H
30
N
2
)
2.2|[Mg
3
Al15
18
Recognit. Chem., 1995, 21, 47.
The mass loss of 16 wt% observed by TGA equates to 1.93
diquat-4 molecules per cell. This suggests that the cavities are
likely to be completely occupied, the excess observed being
adsorbed onto outer surface sites. The analogous sample prepared
with diquat-5 (Mg0.25–AFX) has the overall unit cell contents
4 R. F. Lobo, S. I. Zones and R. C. Medrud, Chem. Mater., 1996, 8, 2409.
5
G. W. Noble, P. A. Wright and A˚ . Kvick, J. Chem. Soc., Dalton Trans.,
997, 4485.
1
6
J. L. Casci, B. M. Lowe and T. V. Whittam, US Pat. 4,537,754, 1985.
7 P. A. Wright, C. Sayag, F. Rey, D. W. Lewis, J. D. Gale, S. Natarajan
and J. M. Thomas, J. Chem. Soc., Faraday Trans., 1995, 91, 3537.
M. Hartmann and L. Kevan, Chem. Rev., 1999, 99, 635.
A. Corma, Chem. Rev., 1995, 95, 559.
0 J. M. Thomas, R. Raja, G. Sankar and R. G. Bell, Nature (London),
1999, 398, 227.
8
9
|
(H
2
O)11(C15
H
32
N
2
)
2.3|[Mg
9
Al15
P
24
O96]. The template excess may
be rationalised by the presence of organic fragments included
1
1
1
1
3
within the gmelinite-type cavity, as suggested by the C MAS
NMR spectra.
1 P. A. Wright, M. J. Maple, A. M. Z. Slawin, V. Patinec, R. A. Aitken,
S. Welsh and P. A. Cox, J. Chem. Soc., Dalton Trans., 2000, 1243.
2 F. Gramm, Ch. Baerlocher, L. B. McCusker, S. J. Warrender, P. A.
Wright, B. Han, S. B. Hong, Z. Liu, T. Ohsuna and O. Terasaki, Nature
(
London), 2006, 444, 79.
Conclusion
1
1
3 S. B. Hong, E. G. Lear, P. A. Wright, W. Z. Zhou, P. A. Cox, C. H.
Shin, J. H. Park and I. S. Nam, J. Am. Chem. Soc., 2004, 126, 5817.
4 A. Tuel, C. Lorentz, V. Gramlich and Ch. Baerlocher, C. R. Chim.,
A novel family of a,x-bis(N-methylpyrrolidinium)alkane struc-
ture directing agents have been synthesised. When added to
aluminophosphate-based synthesis gels these were found to direct
the crystallisation of materials possessing either the ERI or AFX
framework types. Control of the phase which crystallised was
achieved by varying the methylene chain length in the SDA. A close
relationship between this and the length of the cavity rationalises
the observed templating effect. Moreover the use of these SDAs
was found to improve upon those previously applied to prepare
these solids by allowing a greater level of control of the level of
metal substitution into the aluminophosphate framework. This
will allow the level of active catalytic sites in the materials to
be readily changed, whilst still retaining a high degree of phase
purity. As expected divalent Mg and Co were found to substitute
2
005, 8, 531; U. Lohse, E. L o¨ ffler, K. Kosche, J. J a¨ nchen and B. Parltiz,
Zeolites, 1993, 13, 549.
5 S. T. Wilson, R. W. Broach, C. S. Blackwell, C. A. Bateman, N. K.
McGuire and R. M. Kirchner, Microporous Mesoporous Mater., 1999,
1
2
8, 125; P. Feng, X. Bu and C.-S. Yang, Microporous Mesoporous
Mater., 2001, 50, 145.
16 J. March, Advanced Organic Chemistry: Reactions, Mechanisms and
Structure, 4th edn, 1992, Wiley: New York, p. 411.
1
7 N. K. McGuire, C. A. Bateman, C. S. Blackwell, S. T. Wilson and R. M.
Kirchner, Zeolites, 1995, 15, 460.
18 S. T. Wilson, R. W. Broach, C. S. Blackwell, C. A. Bateman, N. K.
McGuire and R. M. Kirchner, Microporous Mesoporous Mater., 1999,
2
8, 125.
1
2
9 C. S. Blackwell and R. L. Patton, J. Phys. Chem., 1984, 88, 6135.
0 S. Prasad and J. F. Haw, Chem. Mater., 1996, 8, 861–864; D. B. Akolekar
and R. F. Howe, J. Chem. Soc., Faraday Trans., 1997, 93, 3263.
3
1
21 P. J. Barrie and J. Klinowski, J. Phys. Chem., 1989, 93, 5972.
for Al, but P solid state NMR showed unexpectedly that these
may be distributed non-randomly throughout the framework. Si
was found to substitute by two different mechanisms (Si → P
and 2Si → Al + P) in the ERI-type solid, which is expected to
modify the acidity of the resultant SAPO-17 material to produce
a catalyst complimentary to the related solid acids SAPO-18 and
SAPO-34.
2
2
2 J. M. Bennett and B. K. Marcus, Stud. Surf. Sci. Catal., 1988, 37, 269.
3 J. Chen, P. A. Wright, J. M. Thomas, S. Natarajan, L. Marchese, S. M.
Bradley, G. Sankar, C. R. A. Catlow, P. L. Gai-Boyes, R. P. Townsend
and C. M. Lok, J. Phys. Chem., 1994, 98, 10216.
2
2
4 R. Szostak and K. P. Lillerud, J. Chem. Soc., Chem. Commun., 1994,
2
357.
5 E. Bourgeat-Lami, F. Di Renzo, F. Fajula, P. H. Mutin and T. Des
Courieres, J. Phys. Chem., 1992, 96, 3807.
This journal is © The Royal Society of Chemistry 2007
Dalton Trans., 2007, 4175–4181 | 4181