Y.-S. Lin et al. / Journal of Molecular Catalysis B: Enzymatic 68 (2011) 245–249
249
2.5
2.0
1.5
1.0
0.5
0.0
the best reaction condition of CALB-catalyzed hydrolysis in
water-saturated MTBE at 35 C is selected, in which an excellent
◦
enantioselectivity (VR/V > 100) with improved enzyme activities
S
is obtainable when comparing with V /(Et) and VR/(Et) using (R,S)-
S
N-2-phenylpropionyl-3-(2-pyridyl)pyrazole as the substrate. The
thermodynamic analysis demonstrates the great influence of water
content and solvent hydrophobicity on varying the ehthalpic and
entropic contributions in water-saturated and anhydrous MTBE
and IPE, and leads to an excellent enthalpy–entropy compensation
relationship between ꢀꢀS and ꢀꢀH. The resolution platform is
successfully extended to other substrates of 2 and 3, but not 4. A
thorough kinetic analysis for all substrates indicates that a critical
valeroyl-chain length is needed for obtaining the enantiomer
discrimination and improved lipase activity for the fast-reacting
(R)-enantiomer.
Acknowledgements
0
20
40
60
80
Financial supports from National Science Council (Grant No. NSC
99-2221-E-182-028) are appreciated.
(
S ) or (S ) (mM)
R S
Fig. 1. Variations of VR/(Et) and 40VR/(Et) with (SR) and (SS) for CALB-catalyzed
hydrolysis in water-saturated MTBE for (R)-1 (ꢀ), (S)-1 (᭹), (R)-2 (ꢁ), (S)-2 (ꢀ),
References
(
R)-3 (ꢁ), and (S)-3 (ꢂ); those of 20VR/(Et) and 20VR/(Et) for (R)-4 (ꢃ) and (S)-4 (ꢄ).
(
—) Best-fit results.
[1] U.T. Bornscheuer, R.J. Kazlauskas, Hydrolases in Organic Synthesis: Regio- and
Stereoselective Biotransformations, 2nd ed., Wiley-VCH, Weinheim, 2006, pp.
3
7–275.
2] A. Kamal, M.A. Azhar, T. Krishnaji, M.S. Malik, S. Azeeza, Coord. Chem. Rev. 252
2008) 569–592.
Table 4
[
Effects of substrate structure on the kinetic constants for CALB-catalyzed hydrolysis
(
◦
at 35 C.
[
[
[
3] K. Faber, S. Riva, Synthesis 10 (1992) 895–910.
4] U. Hanefeld, Org. Biomol. Chem. 1 (2003) 2405–2415.
5] S.W. Tsai, C.C. Chen, H.S. Yang, I.S. Ng, T.L. Chen, BBA Protein Proteomics 1764
Entry
k2R/KmR (l/h g)
k2S/KmS (l/h g)
E = k2RKmS/k2SKmR
(
2006) 1424–1428.
1
2
3
4
3.01E−2
2.97E−2
2.41E−2
6.52E−3
2.20E−4
1.86E−4
2.88E−4
6.17E−3
137
160
84
[
[
[
[
6] P.Y. Wang, S.W. Tsai, J. Mol. Catal. B: Enzym. 57 (2009) 158–163.
7] F. Theil, Tetrahedron 56 (2000) 2905–2919.
8] E.P. Hudson, R.K. Eppler, D.S. Clark, Curr. Opin. Biotechnol. 16 (2005) 637–643.
9] M.T. Reetz, Adv. Catal. 49 (2006) 1–69.
1
Reaction conditions: 10 ml water-saturated MTBE at 400 rpm. Symbol E−1 as 10−1
[10] M.D. Toscano, K.J. Woycechowsky, D. Hilvert, Angew. Chem. Int. Ed. 46 (2007)
212–3236.
11] P.Y. Wang, T.L. Chen, S.W. Tsai, Biotechnol. Bioeng. 101 (2008) 460–469.
.
3
[
the initial specific activities V /(Et) and VR/(Et) varied with the
[12] P.Y. Wang, Y.J. Chen, A.C. Wu, Y.S. Lin, M.F. Kao, J.R. Chen, J.F. Ciou, S.W. Tsai,
Adv. Synth. Catal. 351 (2009) 2333–2341.
S
enantiomer concentration for 1–4 in water-saturated MTBE at
[
13] A.C. Wu, P.Y. Wang, Y.S. Lin, M.F. Kao, J.R. Chen, J.F. Ciou, S.W. Tsai, J. Mol. Catal.
B: Enzym. 62 (2010) 235–241.
◦
3
5 C, with which the kinetic constant combinations k2R/KmR and
k2S/KmS are estimated and represented in Table 4. Similar kinetic
behaviors for the hydrolysis of (R,S)-N-2-phenylpropionyl-3-(2-
pyridyl)pyrazole at 45 C were reported [14], indicating that the
[14] P.Y. Wang, C.H. Wu, J.F. Ciou, A.C. Wu, S.W. Tsai, J. Mol. Catal. B: Enzym. 66
2010) 113–119.
(
[
15] H.A. Staab, H. Bauer, K.M. Schneider, Azolides in Organic Synthesis and Bio-
chemistry, Wiley-VCH, Weinheim, 1998.
◦
Michaelis constants KmR and KmS are too large to be determined,
and are attributed to the adsorbed water allocated in the active
site near the 3-substituent on impeding the substrate affinity. The
same order-of-magnitude of k2R/KmR (or k2S/KmS) for 1–3 but not 4
indicates that a critical change of the substrate structure can cause
great influences on varying the lipase activity and enantioselectiv-
ity. It is reasonable to attribute the kinetic behavior to the different
k2R and k2S (i.e. nucleophilic attack ability and proton transfer to
the carbonyl carbon atom) but not KmR and KmS (i.e. affinity of both
enantiomers to the enzyme), when comparing the similar size and
electron-withdrawing ability of the propyl substituent for 3 and
ethyl substituent for 4 to the ␣-chiral center.
[16] H. Edlund, P. Berglund, M. Jensen, E. Hedenstrom, H.-E. Hogberg, Acta Chemica
Scan. 50 (1996) 666–671.
[
[
17] K.H. Engel, Tetrahedron: Asym. 2 (1991) 165–168.
18] F. Yang, T.W. Weber, J.L. Gainer, G. Carta, Biotechnol. Bioeng. 56 (1997) 671–680.
[19] B.V. Nguyen, E. Hedenstrom, Tetrahedron: Asym. 10 (1999) 1821–1826.
[
20] N.W.J.T. Heinswan, M.C.R. Franssen, A. van der Padt, R.M. Boom, K. van’t Riet,
A.E. de Groot, Biocatal. Biotrans. 20 (2002) 297–309.
[
21] P. Beier, D. O’Hagan, Chem. Commun. 16 (2002) 1680–1681.
[22] D.J. Ager, S. Babler, D.E. Froen, S.A. Laneman, D.P. Pantaleone, I. Prakash, B. Zhi,
Org. Proc. Res. Dev. 7 (2003) 369–378.
[
[
23] S. Sabbani, E. Henstrom, J. Mol. Catal. B: Enzym. 58 (2009) 6–9.
24] X. Li, D. Wang, Y. Xu, Y.G. Geng, C. Chen, N. Wang, Chin. J. Catal. 30 (2009)
951–957.
[25] M. Kawasaki, Y. Hayashi, H. Kakuda, N. Toyooka, A. Tanaka, M. Goto, S. Kawa-
bataa, T. Kometani, Tetrahedron: Asym. 16 (2005) 4065–4072.
[
26] A. Arce, A. Marchiaro, O. Rodriguez, A. Soto, J. Chem. Eng. Data 47 (2002)
29–532.
5
4
. Conclusions
[27] A. Maczynski, M. Goral, B. Wisniewska-Goclowaka, A. Skrzeez, D. Shaw,
Monatsch. Chem. 134 (2003) 633–653.
[
28] J.A. Alkandary, A.S. Aljimaz, M.S. Fandary, M.A. Fahim, Fluid Phase Equilib.
87–188 (2001) 131–138.
[29] R.S. Phillips, Trends Biotechnol. 14 (1996) (1996) 13–16.
With lipase-catalyzed kinetic resolution of (R,S)-N-2-
methylheptanoyl-3-(2-pyridyl)pyrazole (1) as the model system,
1