8
04 Bull. Chem. Soc. Jpn. Vol. 79, No. 5 (2006)
Solid-State Fluorescence of Dicyanopyrazines
Hz, 4H), 6.63 (d, J ¼ 9:0 Hz, 2H), 7.00 (d, J ¼ 15:1 Hz, 1H), 7.38
free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.
html (or from the Cambridge Crystallographic Data Centre, 12,
Union Road, Cambridge, CB2 1EZ, UK; Fax: +44 1223 336033;
e-mail: deposit@ccdc.cam.ac.uk), by quoting the publication cita-
tion and the deposition numbers for 7a (CCDC-263456), 7c
(CCDC-263457), 7d (CCDC-263458), and 8 (CCDC-263459), re-
spectively. Crystal data for 7a: C18H17N5, MW ¼ 303:37, mono-
clinic, C2=c, Z ¼ 8, a ¼ 21:462ð4Þ, b ¼ 13:629ð2Þ, c ¼ 14:463ð3Þ
(
(
d, J ¼ 9:0 Hz, 2H), 7.54–7.58 (m, 3H), 7.70–7.72 (m, 2H), 8.07
13
d, J ¼ 15:1 Hz, 1H); C NMR (CDCl3) ꢂ 12.6, 44.6, 111.4,
1
1
13.8, 114.1, 114.4, 122.3, 126.6, 128.9, 129.5, 130.7, 130.8,
35.4, 143.7, 149.9, 152.5, 154.1; EIMS (70 eV) m=z (rel intensi-
þ
ty) 379 (M ; 68), 365 (31), 364 (100). Anal. Found: C, 76.16; H,
5.71; N, 18.49%. Calcd for C24H21N5: C, 75.97; H, 5.58; N,
18.46%.
˚
ꢃ
ꢁ3
5
-t-Butyl-2,3-dicyano-6-[4-(diethylamino)styryl]pyrazine
A, ꢄ ¼ 127:71ð1Þ , Dcalcd ¼ 1:204 g cm , T ¼ 296 K, 12871 re-
flections were collected, 2858 unique (Rint ¼ 0:053), 1906 ob-
served (I > 2ꢅðIÞ), 227 parameters, R1 ¼ 0:071, wR2 ¼ 0:114,
GOF ¼ 1:05, refinement on F, 7c: C24H21N5, MW ¼ 379:46,
monoclinic, P21=n, Z ¼ 4, a ¼ 8:926ð3Þ, b ¼ 10:589ð3Þ, c ¼
ꢃ
ꢁ1
(
7d): Yield 55%; mp 226–229 C; IR (KBr)/cm 2232 (CN);
H NMR (CDCl3) ꢂ 1.22 (t, J ¼ 7:1 Hz, 6H), 1.51 (s, 9H), 3.44
q, J ¼ 7:1 Hz, 4H), 6.85 (d, J ¼ 9:0 Hz, 2H), 7.26 (d, J ¼ 14:9
1
(
Hz, 1H), 7.48 (d, J ¼ 9:0 Hz, 2H), 7.98 (d, J ¼ 14:9 Hz, 1H);
1
3
˚
ꢃ
ꢁ3
C NMR (CDCl3) ꢂ 12.7, 29.3, 39.2, 44.7, 111.6, 113.8, 114.4,
15.7, 122.6, 125.6, 130.0, 130.6, 143.0, 149.8, 153.0, 162.6;
22:116ð7Þ A, ꢄ ¼ 95:69ð3Þ , Dcalcd ¼ 1:212 g cm , T ¼ 296 K,
15256 reflections were collected, 3451 unique (Rint ¼ 0:063),
1391 observed (I > 2ꢅðIÞ), 283 parameters, R1 ¼ 0:046, wR2 ¼
1
EIMS (70 eV) m=z (rel intensity) 359 (M ; 59), 345 (32), 344
þ
2
(
100). Anal. Found: C, 73.68; H, 7.05; N, 19.44%. Calcd for
C22H25N5: C, 73.51; H, 7.01; N, 19.48%.
-t-Butyl-2,3-dicyano-6-[4-(dibutylamino)styryl]pyrazine
8): Yield 16%; mp 155–158 C; IR (KBr)/cm 2230 (CN);
H NMR (CDCl3) ꢂ 0.98 (t, J ¼ 7:6 Hz, 6H), 1.38 (sext, J ¼ 7:6
0:154, GOF ¼ 1:08, refinement on F , 7d: C22H25N5, MW ¼
ꢁ
359:47, triclinic, P1, Z ¼ 2, a ¼ 7:324ð2Þ, b ¼ 9:621ð2Þ, c ¼
˚
ꢃ
5
15:176ð3Þ A, ꢃ ¼ 107:84ð1Þ, ꢄ ¼ 95:69ð3Þ, ꢆ ¼ 99:64ð2Þ ,
ꢃ
ꢁ1
ꢁ3
(
1
Dcalcd ¼ 1:190 g cm , T ¼ 296 K, 8019 reflections were collect-
ed, 3159 unique (Rint ¼ 0:061), 2519 observed (I > 2ꢅðIÞ), 270
parameters, R1 ¼ 0:054, wR2 ¼ 0:166, GOF ¼ 0:97, refinement
Hz, 4H), 1.51 (s, 9H), 1.61 (quint, J ¼ 7:6 Hz, 4H), 3.35 (t, J ¼
2
ꢁ
7
:6 Hz, 4H), 6.66 (d, J ¼ 9:0 Hz, 2H), 7.23 (d, J ¼ 14:9 Hz, 1H),
on F , 8: C26H33N5, MW ¼ 415:58, triclinic, P1, Z ¼ 2, a ¼
1
3
˚
7
.49 (d, J ¼ 9:0 Hz, 2H), 8.00 (d, J ¼ 14:9 Hz, 1H); C NMR
7:022ð1Þ, b ¼ 9:586ð2Þ, c ¼ 19:272ð3Þ A, ꢃ ¼ 96:34ð2Þ, ꢄ ¼
ꢃ
ꢁ3
,
(
CDCl3) ꢂ 14.0, 20.3, 29.3, 29.5, 39.2, 50.9, 111.6, 113.8, 114.4,
101:85ð2Þ, ꢆ ¼ 93:64ð2Þ , Dcalcd ¼ 1:098 g cm
T ¼ 296 K,
115.6, 122.5, 125.5, 130.0, 130.5, 143.0, 150.2, 152.9, 162.6;
þ
EIMS (70 eV) m=z (rel intensity) 415 (M ; 40), 372 (100), 330
10044 reflections were collected, 3943 unique (Rint ¼ 0:047),
1853 observed (I > 2ꢅðIÞ), 310 parameters, R1 ¼ 0:066, wR2 ¼
2
(
29). Anal. Found: C, 75.19; H, 8.03; N, 16.77%. Calcd for
C26H33N5: C, 75.14; H, 8.00; N, 16.85%.
-t-Butyl-2,3-dicyano-6-[2-(1,1,7,7-tetramethyl-2,3,6,7-tetra-
hydro-1H,5H-benzo[ij]quinolizin-9-yl)ethenyl]pyrazine (9):
0:181, GOF ¼ 1:05, refinement on F .
5
The authors wish to thank Mr. A. Koseki of Yokohama
National University for fluorescent measurements and Dr. T.
Kobayashi of Osaka Prefecture University for fruitful discus-
sions on solid-state fluorescence.
ꢃ
ꢁ1
1
Yield 33%; mp > 300 C; IR (KBr)/cm 2228 (CN); H NMR
(
3
8
3
1
CDCl3) ꢂ 1.33 (s, 12H), 1.52 (s, 9H), 1.77 (t, J ¼ 6:1 Hz, 4H),
.32 (t, J ¼ 6:1 Hz, 4H), 7.18 (d, J ¼ 14:9 Hz, 1H), 7.34 (s, 2H),
13
.00 (d, J ¼ 14:9 Hz, 1H); C NMR (CDCl3) ꢂ 29.3, 30.3, 32.1,
Supporting Information
5.8, 39.1, 46.7, 113.8, 114.5, 114.8, 122.1, 124.7, 125.1, 130.3,
43.1, 143.9, 153.0, 162.3; EIMS (70 eV) m=z (rel intensity) 439
The calculated UV–vis absorption band for the optimized struc-
ture of 7a–7d, 8, and 9 (Table S1), calculated UV–vis absorption
band for 7a, 7c, 7d, and 8 using the fractional coordinate sets of
X-ray analysis (Table S2), crystal structure of 7a (Fig. S1), crystal
structure of 7c (Fig. S2), crystal structure of 7d (Fig. S3), and
crystal structure of 8 (Fig. S4). This material is available free of
þ
(
M ; 100), 424 (42). Anal. Found: C, 76.09; H, 7.65; N, 15.76%.
Calcd for C28H33N5: C, 76.50; H, 7.57; N, 15.93%.
X-ray Crystallography. Single crystals of 7a, 7c, and 8 were
obtained by slow evaporation of benzene, toluene, and hexane
solutions, respectively. Those of 7d were grown by a solvent dif-
fusion method using hexane and dichloromethane. The diffraction
data were collected by a Rigaku Raxis RAPID-F imaging-plate
References
area detector using graphite-monochromated Cu Kꢃ radiation
˚
1
(
ꢁ ¼ 1:54178 A, 2.0 kW). The structure was solved by a direct
1
Organic Light-Emitting Devices, ed. by J. Shinar, Springer-
Verlag, New York, Berlin, Heidelberg, 2004.
a) H. Langhals, T. Potrawa, H. N o¨ th, G. Linti, Angew.
5
16
method, SIR92 for 7a and 7c and SHELX97 for 7d and 8,
respectively, and refined by fill-matrix least-squares calculations.
H-atoms were located at the calculated positions and treated using
the riding model. Structural disorder was found at the terminal
alkyl groups in 7a and 8. In 7a, one of the ethyl groups was dis-
ordered. The disordered group was refined on the assumption that
the ethyl moiety is disordered in four conformations with equiva-
lent occupancy and bond lengths for N–C and C–C were restrain-
2
Chem., Int. Ed. Engl. 1989, 28, 478. b) K. Shirai, M. Matsuoka,
K. Fukunishi, Dyes Pigm. 1999, 42, 95. c) J. H. Kim, Y. Tani,
M. Matsuoka, K. Fukunishi, Dyes Pigm. 1999, 43, 7. d) M.
Brinkmann, G. Gadret, M. Muccini, C. Taliani, N. Masciocci,
A. Sironi, J. Am. Chem. Soc. 2000, 122, 5147. e) M. Levitus, G.
Zepeda, H. Dang, C. Godinesz, T.-A. V. Khuong, K. Schemieder,
M. A. Garcis-Garibay, J. Org. Chem. 2001, 66, 3188. f) K. Hirano,
S. Minakata, M. Komatsu, Bull. Chem. Soc. Jpn. 2001, 74, 1567.
g) K. Yoshida, Y. Ooyama, H. Miyazaki, S. Watanabe, J. Chem.
Soc., Perkin Trans. 2 2002, 700. h) K.-T. Wong, Y.-Y. Chien,
R.-T. Chen, C.-F. Wang, Y.-T. Lin, H.-H. Chiang, P.-Y. Hsieh,
C.-C. Wu, C. H. Chou, Y. O. Su, G.-H. Lee, S.-M. Peng, J. Am.
Chem. Soc. 2002, 124, 11576. i) Y. Sonoda, Y. Kawanishi, T.
Ikeda, M. Goto, S. Hayashi, Y. Yoshida, N. Tanigaki, K. Yase,
˚
ed to 1.50 and 1.54 A, respectively. Both methyl groups of the ter-
minal butyl groups in 8 were also found to be disordered. The dis-
ordered methyl groups were refined on the assumption that the
methyl groups are disordered in three positions with equivalent
˚
occupancy, and bond lengths were restrained to 1.54 A. All calcu-
lations were performed by Crystal Structure 3.1017 program pack-
age. Crystallographic data have been deposited with Cambridge
Crystallographic Data Centre. Copies of the data can be obtained