130
J. Rokov-Plavec et al. / Archives of Biochemistry and Biophysics 529 (2013) 122–130
[23] M. Mocibob, I. Weygand-Durasevic, Arch. Biochem. Biophys. 470 (2008) 129–
Conclusions
138.
[24] B. Low, F. Gates, T. Goldstein, D. Söll, J. Bacteriol. 108 (1971) 742–750.
[25] I. Weygand-Durasevic´, N. Ban, D. Jahn, D. Söll, Eur. J. Biochem. 214 (1993) 869–
877.
[26] I. Weygand-Durasevic, M. Nalaskowska, D. Söll, J. Bacteriol. 176 (1994) 232–
239.
[27] J.M. Sherman, M.J. Rogers, D. Söll, Nucleic Acids Res. 20 (1992) 2847–2852.
[28] S. Lesjak, I. Weygand-Durasevic, FEMS Microbiol. Lett. 294 (2009) 111–118.
[29] J. Rokov, I. Weygand-Durasevic, Period. Biol. 101 (1999) 137–142.
[30] W. Chiu, Y. Niwa, W. Zeng, T. Hirano, H. Kobayashi, J. Sheen, Curr. Biol. 6 (1996)
325–330.
The observed broad specificity towards tRNAsSer of eukaryotic
and bacterial origin indicates that maize cytosolic SerRS can
accommodate various types of long variable arms as well as vari-
ous types of tertiary structures, displaying an exceptional flexibil-
ity in tRNASer substrate recognition and interaction. The major
identity element for ZmcSerRS is the discriminator base G73,
which probably also plays a role in discrimination against tRNALeu
.
[31] J. Rokov-Plavec, M. Dulic, A.-M. Duchêne, I. Weygand-Durasevic, Plant Cell Rep.
27 (2008) 1157–1168.
[32] J. Rokov-Plavec, S. Lesjak, I. Landeka, I. Mijakovic, I. Weygand-Durasevic, Arch.
Biochem. Biophys. 397 (2002) 40–50.
[33] I. Gruic-Sovulj, N. Uter, T. Bullock, J.J. Perona, J. Biol. Chem. 280 (2005) 23978–
23986.
[34] A. Steinmetz, J.H. Weil, Meth. Enzymol. 118 (1986) 212–231.
[35] A.-M. Duchêne, C. Pujol, L. Maréchal-Drouard, Curr. Genet. 55 (2009) 1–18.
[36] J. Rokov-Plavec, S. Bilokapic, I. Gruic-Sovulj, M. Mocibob, F. Glavan, M. Brgles, I.
Weygand-Durasevic, Period. Biol. 106 (2004) 147–154.
[37] P.P. Chan, T.M. Lowe, Nucleic Acids Res. 37 (2009) D93–97.
[38] M. Michaud, V. Cognat, A.-M. Duchêne, L. Maréchal-Drouard, Plant J. 66 (2011)
80–93.
[39] E.J. Murgola, Annu. Rev. Genet. 19 (1985) 57–80.
[40] N.M. Reynolds, J. Ling, H. Roy, R. Banerjee, S.E. Repasky, P. Hamel, M. Ibba, Proc
Natl. Acad. Sci. USA 107 (2010) 4063–4068.
Both maize cytosolic and organellar SerRS enzymes display high
fidelity in amino acid recognition. This is established by highly
selective synthetic pathways in corroboration with pre-transfer
editing possibly acting as a buffer against sudden changes in cellu-
lar amino acid pools. However, it is possible that some misacyla-
tion of tRNASer does actually occur if the aminoacyl transfer step
is comparable to or faster than the aa-AMP hydrolysis rate
[71,72,77]. Contrary to previous thoughts, it has been recently ar-
gued that mistranslation does not necessarily have lethal conse-
quences for the cell and that under some conditions increased
levels of mistranslation can be advantageous [2]. Using in vitro
[71,72] and in vivo [28] methods developed in our laboratory we
will try to get a better insight into the connection between pre-
transfer editing and possible tRNASer misacylation as well as into
the requirements for translational fidelity in the plant cytosol,
mitochondria and plastids.
[41] I. Gruic-Sovulj, M. Dulic, J. Jaric, N. Cvetesic, K. Majsec, I. Weygand-Durasevic,
Croat. Chem. Acta 83 (2010) 163–169.
[42] D. Ahel, D. Slade, M. Mocibob, D. Söll, I. Weygand-Durasevic, FEBS Lett. 15
(2005) 4344–4348.
[43] I. Gruic´-Sovulj, M. Dulic´, I. Weygand-Ðuraševic´, Croat. Chem. Acta 84 (2011)
179–184.
[44] J. Rokov, D. Söll, I. Weygand-Durasevic, Plant Mol. Biol. 38 (1998) 497–502.
[45] S. Bilokapic, D. Korencic, D. Söll, I. Weygand-Durasevic, Eur. J. Biochem. 271
(2004) 694–702.
[46] Y. Itoh, S. Sekine, C. Kuroishi, T. Terada, M. Shirouzu, S. Kuramitsu, RNA Biol. 5
(2008) 169–177.
Acknowledgments
´
The authors thank Nevena Cvetešic for support and helpfull
comments. This work was supported by the grant from the Minis-
try of Science, Education and Sports of the Republic of Croatia (pro-
ject 119-0982913-1358).
[47] A. Soma, H. Himeno, Nucleic Acids Res. 26 (1998) 4374–4381.
[48] X. Tian, J. Zheng, S. Hu, J. Yu, J. Mol. Evol. 64 (2007) 299–307.
[49] M.M. Brandão, M.C. Silva-Filho, Biol. Evol. 28 (2011) 79–85.
[50] S. Cusack, A. Yaremchuk, M. Tukalo, EMBO J. 15 (1996) 2834–2842.
[51] K. Breitschopf, H.J. Gross, EMBO J. 13 (1994) 3166–3169.
[52] R. Geslain, E. Aeby, T. Guitart, T.E. Jones, M. Castro de Moura, F. Charrière, A.
Schneider, L. Ribas de Pouplana, J. Biol. Chem. 281 (2006) 38217–38225.
[53] R. Giegé, F. Jühling, J. Pütz, P. Stadler, C. Sauter, C. Florentz, Wiley Interdiscip.
Rev. RNA 3 (2011) 37–61.
[54] H. Himeno, S. Yoshida, A. Soma, K. Nishikawa, J. Mol. Biol. 268 (1997) 704–711.
[55] R. Rauhut, H.J. Gabius, F. Cramer, Biochemistry 24 (1985) 4052–4057.
[56] H. Jakubowski, Biochemistry 19 (1980) 5071–5078.
[57] H. Jakubowski, A. Guranowski, J. Biol. Chem. 278 (2003) 6765–6770.
[58] G.L. Igloi, E. Schiefermayr, FEBS J. 276 (2009) 1307–1318.
[59] C.A. Aldinger, A.K. Leisinger, G.L. Igloi, FEBS J. 279 (2012) 3622–3638.
[60] P.J. Beuning, K. Musier-Forsyth, J. Biol. Chem. 276 (2001) 30779–30785.
[61] J. Ling, K.M. Peterson, I. Simonovic, D. Söll, M. Simonovic, J. Biol. Chem. 287
(2012) 28518–28525.
[62] L.A. Nangle, C.M. Motta, P. Schimmel, Chem. Biol. 13 (2006) 1091–1100.
[63] H. Weiner, S. Blechschmidtschneider, H. Mohme, W. Eschrich, H.W. Heldt,
Plant Physiol. Biochem. 29 (1991) 19–23.
[64] H. Winter, G. Lohaus, H.W. Heldt, Plant Physiol. 99 (1992) 996–1004.
[65] S. Boggio, J. Palatnik, H. Heldt, E. Valle, Plant Sci. 159 (2000) 125–133.
[66] R.C. Sicher, J.Y. Barnaby, Physiol. Plant 144 (2012) 238–253.
[67] Z. Kovács, L. Simon-Sarkadi, I. Vashegyi, G. Kocsy, Different accumulation of
free amino acids during short- and long-term osmotic stress in wheat, Sci.
World J. (2012) 10. Article ID 216521.
References
[1] M. Ibba, S. Dieter, Annu. Rev. Biochem. 69 (2000) 617–650.
[2] N.M. Reynolds, B. Lazazzera, M. Ibba, Nat. Rev. Microbiol. 8 (2010) 849–856.
[3] R. Giegé, M. Sissler, C. Florentz, Nucleic Acids Res. 26 (1998) 5017–5035.
[4] M. Ibba, S. Sever, M. Praetorius-Ibba, D. Söll, Nucleic Acids Res. 27 (1999)
3631–3637.
[5] H. Jakubowski, E. Goldman, Microbiol. Rev. 56 (1992) 412–429.
[6] J. Ling, N. Reynolds, M. Ibba, Annu. Rev. Microbiol. 63 (2009) 61–78.
[7] J.W. Lee, K. Beebe, L.A. Nangle, J. Jang, C.M. Longo-Guess, S.A. Cook, M.T.
Davisson, J.P. Sundberg, P. Schimmel, S.L. Ackerman, Nature 443 (2006) 50–55.
[8] J.M. Bacher, V. de Crécy-Lagard, P.R. Schimmel, Proc Natl. Acad. Sci. USA 102
(2005) 1697–1701.
[9] V. Karkhanis, A.P. Mascarenhas, S. Martinis, J. Bacteriol. 189 (2007) 8765–8768.
[10] S. Bilokapic, N. Ban, I. Weygand-Durasevic, Croat. Chem. Acta 82 (2009) 493–
501.
[11] S. Bilokapic, T. Maier, D. Ahel, I. Gruic-Sovulj, D. Söll, I. Weygand-Durasevic, N.
Ban, EMBO J. 25 (2006) 2498–2509.
[12] S. Bilokapic, J. Rokov Plavec, N. Ban, I. Weygand-Durasevic, FEBS J. 275 (2008)
2831–2844.
[13] I. Gruic-Sovulj, J. Rokov-Plavec, I. Weygand-Durasevic, FEBS Lett. 581 (2007)
5110–5114.
[14] O.O. Obembe, J.O. Popoola, S. Leelavathi, S.V. Reddy, Biotechnol. Adv. 29 (2011)
210–222.
[15] P. Ahmad, M. Ashraf, M. Younis, X. Hu, A. Kumar, N.A. Akram, F. Al-Qurainy,
Biotechnol. Adv. 30 (2012) 524–540.
[16] B. Lenhard, O. Orellana, M. Ibba, I. Weygand-Durasevic, Nucleic Acids Res. 27
(1999) 721–729.
[17] I. Weygand-Durasevic, S. Cusack, Seryl-tRNA synthetases, in: M. Ibba, C.
Francklyn, S. Cusack (Eds.), The Aminoacyl-tRNA Synthetases, Landes
Bioscience, Georgetown TX, 2005, pp. 177–192.
[18] H. Asahara, H. Himeno, K. Tamura, N. Nameki, T. Hasegawa, M. Shimizu, J. Mol.
Biol. 236 (1994) 738–748.
[19] X.Q. Wu, H.J. Gross, Nucleic Acids Res. 21 (1993) 5589–5594.
[20] D. Korencic, C. Polycarpo, I. Weygand-Durasevic, D. Söll, J. Biol. Chem. 279
(2004) 48780–48786.
[68] K. Weigelt, H. Küster, R. Radchuk, M. Müller, H. Weichert, A. Fait, A.R. Fernie, I.
Saalbach, H. Weber, Plant J. 55 (2008) 909–926.
[69] H. Jakubowski, A.R. Fersht, Nucleic Acids Res. 9 (1981) 3105–3117.
[70] K.E. Splan, M.E. Ignatov, K. Musier-Forsyth, J. Biol. Chem. 283 (2008) 7128–
7134.
[71] M. Dulic, N. Cvetesic, J.J. Perona, I. Gruic-Sovulj, J. Biol. Chem. 285 (2010)
23799–23809.
[72] N. Cvetesic, J.J. Perona, I. Gruic-Sovulj, J. Biol. Chem. 287 (2012) 25381–25394.
[73] J.G. Arnez, D. Moras, Trends Biochem. Sci. 22 (1997) 211–216.
[74] H. Roy, J. Ling, J. Alfonzo, M. Ibba, J. Biol. Chem. 280 (2005) 38186–38192.
[75] V. Karkhanis, M.T. Boniecki, K. Poruri, S. Martinis, J. Biol. Chem. 281 (2006)
33217–33225.
[76] S.W. Lue, S.O. Kelley, Biochemistry 44 (2005) 3010–3016.
[77] A. Minajigi, C.S. Francklyn, J. Biol. Chem. 285 (2010) 23810–23817.
[78] C. Ross-Inta, C.-Y. Tsai, C. Giulivi, Biosci. Rep. 28 (2008) 239–249.
[21] A. Yaremchuk, I. Kriklivyi, M. Tukalo, S. Cusack, EMBO J. 21 (2002) 3829–3840.
[22] V. Biou, A. Yaremchuk, M. Tukalo, S. Cusack, Science 263 (1994) 1404–1410.