10.1002/asia.201701044
Chemistry - An Asian Journal
FULL PAPER
Conclusions
Keywords:pendent copolymer • tristable switching • double
mechanisms •steric effect
In conclusion, two new random copolymers PMNN and PMNB
containing
a flexible spacer and electron-accepting 1,8-
[1]
a) S. J. Kim, J. S. Lee, Nano Lett 2010, 10, 2884-2890; b) Q.-D. Ling,
D.-J. Liaw, E. Y.-H. Teo, C. Zhu, D. S.-H. Chan, E.-T. Kang, K.-G. Neoh,
Polymer, 2007, 48, 5182-5201; c) S. J. Liu, P. Wang, Q. Zhao, H. Y.
Yang, J. Wong, H. B. Sun, X. C. Dong, W. P. Lin, W. Huang, Adv.
Mater. 2012, 24, 2901-2905; d) L. Sambe, V. R. de La Rosa, K. Belal, F.
Stoffelbach, J. Lyskawa, F. Delattre, M. Bria, G. Cooke, R.
Hoogenboom, P. Woisel, Angew. Chem. Int. Ed. 2014, 53, 5044-5048;
e) L. H. Xie, Q. D. Ling, X. Y. Hou, W. Huang, J. Am. Chem. Soc. 2008,
130, 2120-2121; f) L.-H. Xie, C.-R. Yin, W.-Y. Lai, Q.-L. Fan, W. Huang,
Prog. in Polym. Sci. 2012, 37, 1192-1264; g) A.-D. Yu, T. Kurosawa, Y.-
C. Lai, T. Higashihara, M. Ueda, C.-L. Liu, W.-C. Chen, J. Mater. Chem.
2012, 22, 20754; h) H. Zhuang, X. Xu, Y. Liu, Q. Zhou, X. Xu, H. Li, Q.
Xu, N. Li, J. Lu, L. Wang, J. Phys. Chem. C, 2012, 116, 25546-25551.
a) P. Y. Gu, F. Zhou, J. Gao, G. Li, C. Wang, Q. F. Xu, Q. Zhang, J. M.
Lu, J. Am. Chem. Soc. 2013, 135, 14086-14089; b) C. S. Hwang, Adv.
Electron. Mater. 2015, 1, 1400056.
naphthalimide were designed and synthesized. They both have
high quality thin films but display different ternary memory
behaviors. According to the analysis, the memory behaviors
were achieved by combining dual mechanisms, conformational
change and charge trapping mechanism. The different memory
behaviors of PMNN and PMNB were caused by different
connection sites of 1,8-naphthalimide moieties thus leading to
different steric twist effects in polymers. This work offers
fundamental insight for the rational design of ternary memory
materials for polymer memory devices.
[2]
[3]
Experimental Section
a) E. Y. Hong, C. T. Poon, V. W. Yam, J. Am. Chem. Soc. 2016, 138,
6368-6371; b) A. Kumar, M. Chhatwal, P. C. Mondal, V. Singh, A. K.
Singh, D. A. Cristaldi, R. D. Gupta, A. Gulino, Chem. Commun. (Camb)
2014, 50, 3783-3785; c) C. T. Poon, D. Wu, W. H. Lam, V. W. Yam,
Angew. Chem. Int. Ed. 2015, 54, 10569-10573.
Device Fabrication and Characterization: The indium tin oxide (ITO)
glass was precleaned sequentially with deionized water, acetone and
ethanol in ultrasonic bath each for 20 min, respectively. The copolymer
was dissolved in cyclohexanone (12 mg·mL-1) and filtered through micro
filters with a pinhole size of 0.22 mm, Thereafter, the solutions were spin-
coated onto ITO at 2000 rpm and the solvent was removedin a vacuum
chamber at 10-1 Pa and 50 oC for 12 h. The thickness of the polymer
layer was about 80 nm. Finally, the top Al electrode of 100 nm thick was
thermally evaporated through a shadow mask under a pressure of 5×10-
6torr. The active area of each cell was 0.126 mm2 (anummular point with
a radius of 0.2 mm). All electrical measurements of the device were
[4]
[5]
G. Liu, D. J. Liaw, W. Y. Lee, Q. D. Ling, C. X. Zhu, D. S. Chan, E. T.
Kang, K. G. Neoh, Philos. Trans. A Math. Phys. Eng. Sci. 2009, 367,
4203-4214.
a) M. J. Lee, Y. Park, D. S. Suh, E. H. Lee, S. Seo, D. C. Kim, R. Jung,
B. S. Kang, S. E. Ahn, C. B. Lee, D. H. Seo, Y. K. Cha, I. K. Yoo, J. S.
Kim, B. H. Park, Adv. Mater. 2007, 19, 3919-3923; b) J. C. Scott, L. D.
Bozano, Adv. Mater. 2007, 19, 1452-1463.
[6]
[7]
aY. Gao, G. P. Robertson, M. D. Guiver, S. D. Mikhailenko, X. Li, S.
Kaliaguine, Polymer,2006, 47, 808-816; bG. Kim, S. J. Kang, G. K.
Dutta, Y. K. Han, T. J. Shin, Y. Y. Noh, C. Yang, J. Am. Chem. Soc.
2014, 136, 9477-9483.
characterized under ambient conditions, using
semiconductor parameter analyzer.
a
HP 4145B
1H NMR spectra were obtained on an Inova 400MHz FT-NMR
spectrometer. UV-vis absorption spectra were recorded by a PerkinElmer
Lambda-17 spectrophotometer at room temperature. Thermogravimetric
analysis (TGA) was conducted on a TA instrument Dynamic TGA 2950 at
a heating rate of 20 oC·min-1 under a nitrogen flow rate of 100 mL·min-1.
Cyclic voltammetry was performed at room temperature using an ITO
working electrode, a reference electrode of Ag/AgCl, and a counter
electrode (Pt wire) at a scanning rate of 100 mV·s-1 (CorrTest CS
a) S. M. Anderson, S. D. Mitchell, K. A. LaPlante, R. K. McKenney, D. E.
Lewis, J.Heterocycl. Chem. 2017, 54, 2029-2037; b) T. T. Do, H. D.
Pham, S. Manzhos, J. M. Bell, P. Sonar, ACS Appl. Mater. Interfaces,
2017, 9, 16967-16976; c) P. Gautam, R. Sharma, R. Misra, M. L.
Keshtov, S. A. Kuklin, G. D. Sharma, Chem. Sci. 2017, 8, 2017-2024;
d) H. Ulla, M. R. Kiran, B. Garudachari, T. N. Ahipa, K. Tarafder, A. V.
Adhikari, G. Umesh, M. N. Satyanarayan, J. of Mol. Struct. 2017, 1143,
344-354; e) H.-H. Lin, Y.-C. Chan, J.-W. Chen, C.-C. Chang, J. Mater.
Chem. 2011, 21, 3170.
Electrochemical
Workstation
analyzer)
in
a
solution
of
[8]
[9]
a) H.-J. Yen, J.-H. Chang, J.-H. Wu, G.-S. Liou, Polym. Chem. 2015, 6,
7758-7763; b) Y. Luo, Y. Wang, S. Chen, N. Wang, Y. Qi, X. Zhang, M.
Yang, Y. Huang, M. Li, J. Yu, D. Luo, Z. Lu, Small, 2017, 13.
a) R. Baruah, A. Kumar, R. R. Ujjwal, S. Kedia, A. Ranjan, U. Ojha,
Macromolecules, 2016, 49, 7814-7824; b) F. Bella, G. Leftheriotis, G.
Griffini, G. Syrrokostas, S. Turri, M. Grätzel, C. Gerbaldi, Adv.Funct.
Mater. 2016, 26, 1127-1137; c) C. Ouyang, J. Liu, Q. Liu, Y. Li, D. Yan,
Q. Wang, M. Guo, A. Cao, ACS Appl. Mater. Interfaces, 2017, 9,
10366-10370.
tetrabutylammonium perchlorate (TBAP) in acetonitrile (0.1 M). SEM
images were taken on a Hitachi S-4700 scanning electron microscope.
Molecular weights (Mw) and polydispersity (Mw/Mn) was measured by
gel permeation chromatography (GPC) utilizing a Waters 1515 pump and
adifferential refractometer, THF was used as a mobile phase at a flow
rate of 1.0 mL·min-1.Differential scanning calorimetry (DSC) analyses
were performed on a Shimadzu DSC-60A Instrument. Atomic force
microscopy (AFM) measurements were performed by using a MFP-
3DTM (Digital Instruments/Asylum Research) AFM instrument in tapping
mode.
[10] a) D. Wi, J. Kim, H. Lee, N.-G. Kang, J. Lee, M.-J. Kim, J.-S. Lee, M.
Ree, J. Mater. Chem. C, 2016, 4, 2017-2027; b) Y. Li, Z. Liu, H. Li, Q.
Xu, J. He, J. Lu, ACS App.l Mater. Interfaces, 2017, 9, 9926-9934; cA.
Corani, M. H. Li, P. S. Shen, P. Chen, T. F. Guo, A. El Nahhas, K.
Zheng, A. Yartsev, V. Sundstrom, C. S. Ponseca, Jr., J. Phys. Chem.
Lett. 2016, 7, 1096-1101.
Acknowledgements
[11] a) Z. Zhao, Z. Yin, H. Chen, Y. Guo, Q. Tang, Y. Liu, J. Mater. Chem. C
2017, 5, 2892-2898; b) Z. Zhao, Z. Yin, H. Chen, L. Zheng, C. Zhu, L.
Zhang, S. Tan, H. Wang, Y. Guo, Q. Tang, Y. Liu, Adv. Mater. 2017,
29; c) K. Oniwa, H. Kikuchi, T. Kanagasekaran, H. Shimotani, S. Ikeda,
The authors gratefully thank the NSF of China (21336005 and
21476152), and National Excellent Doctoral Dissertation funds
(201455).
For internal use, please do not delete. Submitted_Manuscript
This article is protected by copyright. All rights reserved.