Chemistry - A European Journal
10.1002/chem.201801300
FULL PAPER
cryptand’s affinity for lead(II) compares favourably with those for Acknowledgements
potassium, calcium and zinc(II) cations, although it should be
noted that mass spectrometry is not a quantitative analysis
technique. The room temperature 1H NMR spectrum of the
reaction mixture was also recorded at the end-point of the reaction
in order to quantify the relative concentrations of the lead(II) and
We thank the European Research Council for funding under the
European Union’s 7th Framework programme (FP7/2007–2013),
ERC advanced grant agreement number 267426. TB thanks the
Development and Promotion Science and Technology Talent
Project (DPST), Thailand for funding. We also thank Diamond
Lightsource for an award of beamtime on I19 (MT13639) and Drs
David Allan, Mark Warren, Harriott Nowell, and Sarah Barnett for
technical support
sodium cryptate complexes, which each give rise to
a
1
3
characteristic set of H NMR signals in CD OD. Analysis of the
integral ratios revealed that the lead(II) cryptate complex is the
major product of the competition experiment, while complexes of
all other metal cations, including sodium, are only present as
baseline impurities (Figure S15, supporting information).[60] Two
additional minor sets of peak are observed in the spectrum. These
peaks are assigned to protonated forms of the free ligand, which
are estimated to make up ~13% of the total product distribution.[61]
The cryptand therefore appears to show a selectivity preference
for complexation of divalent lead cations in the presence of a
range of other mono- and di-cations.
Keywords: cryptands • metal cation recognition • template-
directed assembly • host–guest chemistry • supramolecular
chemistry
[
1]
2]
J. M. Lehn, Acc. Chem. Res. 1978, 11, 49–57.
[
B. Dietrich, J. M. Lehn, J. P. Sauvage, Tetrahedron Lett. 1969, 10,
2
889–2892.
B. Dietrich, J. M. Lehn, J. P. Sauvage, Tetrahedron 1973, 29, 1647–
658.
B. Dietrich, J. M. Lehn, J. P. Sauvage, Tetrahedron Lett. 1969, 10,
885–2888.
B. Dietrich, J. M. Lehn, J. P. Sauvage, J. Blanzat, Tetrahedron 1973,
9, 1629–1645.
[3]
[4]
[5]
1
2
2
[6]
[7]
[8]
[9]
D. Moras, B. Metz, R. Weiss, Acta Crystallogr. B 1973, 29, 383–388.
J. M. Lehn, J. P. Sauvage, J Chem Soc D 1971, 0, 440–441.
J. M. Lehn, J. P. Sauvage, J. Am. Chem. Soc. 1975, 97, 6700–6707.
C. Moore, B. C. Pressman, Biochem. Biophys. Res. Commun. 1964,
1
5, 562–567.
J. M. Lehn, J. P. Sauvage, B. Dietrich, J. Am. Chem. Soc. 1970, 92,
916–2918.
A. E. Martell, R. D. Hancock, R. J. Motekaitis, Coord. Chem. Rev.
994, 133, 39–65.
[10]
[11]
[12]
2
1
X. X. Zhang, R. M. Izatt, J. S. Bradshaw, K. E. Krakowiak, Coord.
Chem. Rev. 1998, 174, 179–189.
[
13]
14]
P. Auffinger, G. Wipff, J. Am. Chem. Soc. 1991, 113, 5976–5988.
G. Wipff, J. Coord. Chem. 1992, 27, 7–37.
Figure 8. Truncated sections of an electrospray mass spectrum used to analyse
the product distribution at the end-point of the cation competition experiment.
[
2
+
-
+
-
[15]
E. S. Leite, S. R. Santana, P. H. Hünenberger, L. C. G. Freitas, R. L.
Longo, J. Mol. Model. 2007, 13, 1017–1025.
Only the lead and sodium cryptate complexes [Pb
1] ·2X and [Na 1] ·X
Ì Ì
2
+
+
+
2+
are detected from a multicomponent mixture containing Pb , Na , K , Ca and
Zn cations. All identified ions which contain the cryptand ligand 1 are shown,
2
+
[
16]
17]
V. McKee, J. Nelson, R. M. Town, Chem. Soc. Rev. 2003, 32, 309–
and the full spectrum is provided as supporting information (Figure S14, ESI).
325.
[
S. O. Kang, J. M. Llinares, V. W. Day, K. Bowman-James, Chem. Soc.
Rev. 2010, 39, 3980.
Conclusions
[18]
Y. Han, Y. Jiang, C.-F. Chen, Tetrahedron 2015, 71, 503–522.
D. Landini, A. Maia, F. Montanari, P. Tundo, J. Am. Chem. Soc. 1979,
[19]
1
01, 2526–2530.
A. Woodruff, C. A. Pohl, A. Bordunov, N. Avdalovic, J. Chromatogr. A
002, 956, 35–41.
9
A new bis-triazacyclononane tris-pyridyl N -azacryptand ‘Beer
[
20]
can’ ligand was synthesised via a convenient one-pot [2 + 3]
condensation reaction which is templated by sodium and
2
[
21]
22]
M.-T. Lai, J.-S. Shih, The Analyst 1986, 111, 891.
+
−
2
potassium cations. The diprotonated free ligand [H ·1] ·2Br and
[
S. K. Srivastava, V. K. Gupta, S. Jain, Anal. Chem. 1996, 68, 1272–
+
−
+
−
the metal cryptate complexes [Li
1·H] ·2Cl , [Na 1] ·Cl ,
Ì Ì
1
275.
2
+
−
+
−, and [Pb
2+
−
[
Na
Ì
1·H] ·2Cl , [K
Ì
1] ·PF
6
Ì
1] ·2X were
[23]
M. K. Amini, M. Mazloum, A. A. Ensafi, Fresenius J. Anal. Chem.
1999, 364, 690–693.
structurally characterised in the solid state. The structures
demonstrate that the highly preorganised cage-like ligand is
capable of undergoing slight conformational distortions in order to
optimally accommodate each cation. Preliminary metal cation
binding competition experiments revealed that the new cryptand
exclusively binds sodium and lead in the presence of potassium,
zinc and calcium cations in methanol solution. Detailed
quantitative investigations into the thermodynamic and kinetic
aspects of the cryptand’s metal cation binding properties are
continuing in our laboratories.
[
[
[
[
24]
25]
26]
27]
F. J. Tehan, B. L. Barnett, J. L. Dye, J. Am. Chem. Soc. 1974, 96,
7203–7208.
J. Kim, A. S. Ichimura, R. H. Huang, M. Redko, R. C. Phillips, J. E.
Jackson, J. L. Dye, J. Am. Chem. Soc. 1999, 121, 10666–10667.
R. H. Huang, M. K. Faber, K. J. Moeggenborg, D. L. Ward, J. L. Dye,
Nature 1988, 331, 599–601.
P. A. Edwards, J. D. Corbett, Inorg. Chem. 1977, 16, 903–907.
J. M. Goicoechea, S. C. Sevov, J. Am. Chem. Soc. 2004, 126, 6860–
6861.
[28]
[
29]
30]
C. Suchentrunk, N. Korber, New J. Chem. 2006, 30, 1737–1739.
C.-J. Chuang, W.-S. Li, C.-C. Lai, Y.-H. Liu, S.-M. Peng, I. Chao, S.-H.
Chiu, Org. Lett. 2009, 11, 385–388.
[
This article is protected by copyright. All rights reserved.