www.eurjic.org
FULL PAPER
Synthesis of TOP-Capped Nickel Nanoparticles: Complex
NiL pz] (0.2 mmol, 0.181 g) was dissolved in tri-n-octylphosphine
TOP) (6 mL) and injected into hot hexadecylamine (HDA)
6.025 g, 25 mmol) at 190 °C. An initial decrease in temperature
from 190 to about 175 °C was observed. The solution was then
allowed to stabilize, and the reaction was continued for 45 min at
[7] W. Kaim, Angew. Chem. Int. Ed. Engl. 1983, 22, 171; Angew.
Chem. 1983, 95, 201.
[
(
(
2
n
[
8] For examples: a) R. Rösler, C. Silvestru, G. Espinosa-Perez, I.
Haiduc, R. Cea-Olivares, Inorg. Chim. Acta 1996, 241, 47; b)
A. Silvestru, D. Bilc, R. Rosler, J. E. Drake, I. Haiduc, Inorg.
Chim. Acta 2000, 305, 106; c) E. V. Garcia-Baez, M. J. Rozales-
Hoz, H. Nöth, I. Haiduc, C. Silvestru, Inorg. Chem. Commun.
1
7
90 °C. After completion, the reaction mixture was cooled to
0 °C, and methanol was added to precipitate the nanoparticles.
2000, 3, 173; d) S. D. Robertson, T. Chivers, J. Akhtar, M.
Afzaal, P. O’Brien, Dalton Trans. 2008, 7004; e) I. Haiduc, J.
Organomet. Chem. 2001, 623, 29; f) A. Panneerselvam, M. A.
Malik, M. Afzaal, P. O’Brien, M. Helliwell, J. Am. Chem. Soc.
2008, 130, 2420; g) N. Levesanos, S. D. Robertson, D. Ma-
ganas, C. P. Raptopoulou, A. Terzis, P. Kyritsis, T. Chivers, In-
org. Chem. 2008, 47, 2949; h) D. Maganas, A. Grigoropoulos,
S. S. Staniland, S. D. Chatziefthimiou, A. Harrison, N. Robert-
son, P. Kyritsis, F. Neese, Inorg. Chem. 2010, 49, 5079; i) E.
Ferentinos, D. Maganas, C. P. Raptopoulou, A. Terzis, V. Psy-
charis, N. Robertson, P. Kyritsis, Dalton Trans. 2011, 40, 169.
The solid was separated by centrifugation and washed five times
with methanol. The resulting solid precipitates of TOP-capped
nickel nanoparticles were dispersed in toluene for further analysis.
Crystal Structure Determination: X-ray data collections for HL and
[
NiL
2
pz]
n
were performed with a Mar345 image plate detector by
radiation (Zr-filter) at 150(2) K. The data were inte-
using Mo-K
α
[17]
grated with the crysAlisPro software. The implemented empirical
absorption correction was applied. The structures were solved by
direct methods with the SHELXS-97 program
[18]
and refined by
[9] For examples: a) K. R. Koch, O. Hallale, S. A. Bourne, J.
Miller, J. Bacsa, J. Mol. Struct. 2001, 561, 185; b) S. A. Bourne,
O. Hallale, K. R. Koch, Cryst. Growth Des. 2005, 5, 307; c) O.
Hallale, S. A. Bourne, K. R. Koch, New J. Chem. 2005, 29,
full-matrix least-squares on |F | with SHELXL-97.[18] Non-
hydrogen atoms were anisotropically refined, and the hydrogen
atoms were placed on calculated positions in riding mode with tem-
perature factors fixed at 1.2 times the Ueq value of the parent
atoms. Figures were generated with the program Mercury.[
2
1
416; d) O. Hallale, S. A. Bourne, K. R. Koch, CrystEngComm
2005, 7, 161.
19]
[
10] a) F. D. Sokolov, S. V. Baranov, D. A. Safin, F. E. Hahn, M.
Kubiak, T. Pape, M. G. Babashkina, N. G. Zabirov, J. Galezow-
ska, H. Kozlowski, R. A. Cherkasov, New J. Chem. 2007, 31,
1661; b) F. D. Sokolov, V. V. Brusko, D. A. Safin, R. A. Cherk-
asov, N. G. Zabirov, “Coordination Diversity of N-Phosphory-
lated Amides and Ureas towards VIIIB Group Cations” in
Transition Metal Chemistry: New Research (Eds.: B. Varga, L.
Kis), 2008, Nova Science Publishers Inc., Hauppauge NY,
USA, p. 101; c) D. A. Safin, F. D. Sokolov, Ł. Szyrwiel, M. G.
Babashkina, T. R. Gimadiev, F. E. Hahn, H. Kozlowski, D. B.
Krivolapov, I. A. Litvinov, Polyhedron 2008, 27, 2271; d) D. A.
Safin, F. D. Sokolov, T. R. Gimadiev, V. V. Brusko, M. G. Bab-
ashkina, D. R. Chubukaeva, D. B. Krivolapov, I. A. Litvinov,
Z. Anorg. Allg. Chem. 2008, 634, 967; e) D. A. Safin, M. G.
Babashkina, A. Klein, F. D. Sokolov, S. V. Baranov, T. Pape,
F. E. Hahn, D. B. Krivolapov, New J. Chem. 2009, 33, 2443; f)
M. G. Babashkina, D. A. Safin, M. Bolte, A. Klein, Inorg.
Chem. Commun. 2009, 12, 678; g) D. A. Safin, M. Bolte, M. G.
Babashkina, H. Kozlowski, Polyhedron 2010, 29, 488; h) D. A.
Safin, M. G. Babashkina, M. Bolte, A. Klein, Inorg. Chim.
Acta 2011, 365, 32; i) M. G. Babashkina, D. A. Safin, M. Bolte,
M. Srebro, M. Mitoraj, A. Uthe, A. Klein, M. Kockerling, Dal-
ton Trans. 2011, 40, 3142; j) D. A. Safin, M. G. Babashkina,
M. Bolte, F. E. Hahn, Dalton Trans. 2011, 40, 4806; k) M. G.
Babashkina, D. A. Safin, M. Srebro, P. Kubisiak, M. P. Mito-
raj, M. Bolte, Y. Garcia, CrystEngComm 2011, 13, 5321; l)
M. G. Babashkina, D. A. Safin, K. Robeyns, Y. Garcia, Dalton
Trans. 2012, 41, 1451; m) M. G. Babashkina, D. A. Safin, Y.
Garcia, Dalton Trans. 2012, 41, 2234; n) M. G. Babashkina,
D. A. Safin, M. Srebro, P. Kubisiak, M. P. Mitoraj, M. Bolte,
Y. Garcia, CrystEngComm 2012, 14, 370; o) M. G. Babashkina,
D. A. Safin, M. Srebro, P. Kubisiak, M. P. Mitoraj, M. Bolte,
Y. Garcia, Eur. J. Inorg. Chem. 2013, 545; p) D. A. Safin, M. G.
Babashkina, P. Kubisiak, M. P. Mitoraj, K. Robeyns, E.
Goovaerts, Y. Garcia, Dalton Trans. 2013, 42, 5252; q) D. A.
Safin, M. G. Babashkina, K. Robeyns, M. P. Mitoraj, P. Kubis-
iak, M. Brela, Y. Garcia, CrystEngComm 2013, 15, 7845; r)
D. A. Safin, M. G. Babashkina, K. Robeyns, M. Rouzières, R.
Clérac, Y. Garcia, Dalton Trans. 2013, 42, 16470.
–1
Crystal Data for HL: C19
clinic, space group P2 /c, a = 16.2222(7) Å, b = 11.2641(4) Å, c
10.2615(5) Å, β = 91.410(5)°, V = 1874.50(14) Å , Z = 4, ρ =
17 2 3 r
H N O PS, M = 384.38 gmol , mono-
1
3
=
–3
–1
1.623 gcm , μ(Mo-K
α
) = 0.279 mm , reflections: 14376 collected,
(all) = 0.0579, wR (all) = 0.1544.
3436 unique, Rint = 0.045, R
1
2
Crystal Data for [NiL
2
pz] NiO
n
:
C
42
H
36
¯
N
6
6
P
2
S
2
,
M
r
=
–1
9
1
7
0
05.54 gmol , triclinic, space group P1, a = 13.238(7) Å, b =
3.993(4) Å, c = 15.354(9) Å, α = 77.87(4), β = 70.08(5), γ =
3
–3
4.89(4)°, V = 2558(2) Å , Z = 2, ρ = 1.176 gcm , μ(Mo-K
α
) =
.568 mm , reflections: 3741 collected, 1868 unique, Rint = 0.149,
(all) = 0.1208, wR (all) = 0.3220.
–1
R
1
2
2 n
CCDC-983543 (for HL) and -983544 (for [NiL pz] ) contain the
supplementary crystallographic data for this paper. These data can
be obtained free of charge from The Cambridge Crystallographic
Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
Supporting Information (see footnote on the first page of this arti-
cle): Selected bond lengths and bond angles for HL, selected bond
lengths and bond angles for [NiL
lengths and bond angles of HL, and π···π bond lengths (Å) and
angles (°) for [NiL pz]
2 n
pz] , selected hydrogen bond
2
n
.
Acknowledgments
We thank Wallonie-Bruxelles International (WBI, Belgium) for
postdoctoral positions allocated to M. G. B. and D. A. S. This
work was supported by COST (MP1202).
[
[
1] S. Kitagawa, S. Natarajan, Eur. J. Inorg. Chem. 2010, 3685.
2] M. L. Foo, R. Matsuda, S. Kitagawa, Chem. Mater. 2014, 26,
310.
[
3] a) S. M. Cohen, Z. Q. Wang, Chem. Soc. Rev. 2009, 38, 1315;
b) Z. B. Ma, B. Moulton, Coord. Chem. Rev. 2011, 255, 1623;
c) E. Coronado, G. Mínguez Espallargas, Chem. Soc. Rev.
[
11] J. Coates, “Interpretation of Infrared Spectra, A Practical Ap-
proach” in Encyclopedia of Analytical Chemistry (Ed.: R. A.
Meyers), 2000, John Wiley & Sons Ltd, Chichester, pp. 10815–
2
013, 42, 1525; d) L. Fabbrizzi, A. Poggi, Chem. Soc. Rev. 2013,
4
2, 1681; e) P. D. Frischmann, K. Mahata, F. Würthner, Chem.
Soc. Rev. 2013, 42, 1847.
4] J. D. Rocca, W. Lin, Eur. J. Inorg. Chem. 2010, 3725.
10837.
[
[
5] S. K. Henninger, F. Jeremias, H. Kummer, C. Janiak, Eur. J. [12] a) R. H. Dingle, Inorg. Chem. 1971, 10, 1141; b) S. F. A. Kettle,
Inorg. Chem. 2012, 2625.
6] C. Kaes, A. Katz, M. W. Hosseini, Chem. Rev. 2000, 100, 3553.
Physical Inorganic Chemistry: A Coordination Chemistry Ap-
proach, Springer Spektrum, Berlin, Heidelberg, 1996, p. 175.
[
Eur. J. Inorg. Chem. 2015, 1160–1166
1165
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim