Angewandte
Chemie
be rationalized with the notion that the polymer backbone is
formed in a perfect helical assembly and that the backbone,
despite its mixed microstructure, fits perfectly into the
refolded helical polymer. Notably, order in polymer back-
bones lowers chirality, and disorder enhances chirality, as
[5] G. M. Whitesides, B. Grzybowski, Science 2002, 295, 2418 – 2421.
[
6] L. Brunsveld, J. Vekemans, J. Hirschberg, R. P. Sijbesma, E. W.
Meijer, Proc. Natl. Acad. Sci. USA 2002, 99, 4977 – 4982.
7] “Materials Chirality”: G. Guerra, L. Cavallo, P. Corradini in
Topics in Stereochemistry, Vol. 24 (Eds.: M. M. Green, R. J. M.
Nolte, E. W. Meijer), Wiley-Interscience, New York, 2003.
8] G. Wulff, P. K. Dhal, Macromolecules 1990, 23, 4525 – 4527.
[
[
32]
beautifully shown by Green and Garetz for polystyrene.
[
We made several models to rationalize these observations
further. The trans-1,4-polymerization of (E,E)-sorbyl esters in
the preferred transoid conformation fixes the relative stereo-
chemistry of methyl and ester groups on each side of the
double bond to rel-(R,S). But the relative stereochemistry of
adjacent methyl and ester groups in the polymer is deter-
mined by the relative orientation of the sorbyl groups during
polymerization (see ESI). In all cases in which the polymer-
ization proceeds in a zig-zag fashion down the column from
sorbyl-containing side chains alternating in orientation by
[9] K. Mislow, Collect. Czech. Chem. Commun. 2003, 68, 849 – 864.
[10] D. G. Blackmond, Proc. Natl. Acad. Sci. USA 2004, 101, 5732 –
5836.
[
[
11] F. C. Frank, Biochim. Biophys. Acta 1953, 11, 459 – 463.
12] K. Soai, T. Shibata, H. Morioka, K. Choji, Nature 1995, 378, 767 –
768.
[
13] M. M. Green, J.-W. Park, T. Sato, A. Teramoto, S. Lifson,
R. L. B. Selinger, J. V. Selinger, Angew. Chem. 1999, 111, 3328 –
3345; Angew. Chem. Int. Ed. 1999, 38, 3138 – 3154; .
[
[
14] J. J. L. M. Cornelissen, M. Fischer, N. A. J. M. Sommerdijk,
R. J. M. Nolte, Science 1998, 280, 1427 – 1430.
15] J. J. L. M. Cornelissen, J. J. J. M. Donners, R. d. Gelder, W. S.
Graswinckel, G. A. Metselaar, A. E. Rowan, N. A. J. M. Som-
merdijk, R. J. M. Nolte, Science 2001, 293, 676 – 680.
+
308 and À308 (Figure 2a), no net chirality results. When
sorbyl-containing side chains follow the seam of hydrogen
bonds, a chiral polymer results, but the increased distance
between consecutive monomeric units results in the accumu-
lation of strain in the polymer (Figure 2b). Therefore, a mixed
microstructure, resulting from polymerization switching
between zig-zag and helical propagation is in line with both
NMR and CD spectral evidence. In the presence of 2a or 2b
[
16] M. Fujiki, J. R. Koe, K. Terao, T. Sato, A. Teramoto, J. Watanabe,
Polym. J. 2003, 35, 297 – 344.
[17] E. Yashima, T. Matsushima, Y. Okamoto, J. Am. Chem. Soc.
997, 119, 6345 – 6359.
1
[
[
18] E. Yashima, K. Maeda, Y. Okamoto, Nature 1999, 399, 449 – 451.
19] L. J. Prins, J. Huskens, F. d. Jong, P. Timmermann, D. N.
Reinhoudt, Nature 1999, 398, 498 – 502.
[
33,34]
there is no change in tacticity of the polymerization;
[
20] L. J. Prins, F. d. Jong, P. Timmermann, D. N. Reinhoudt, Nature
rather it introduces a bias of the absolute stereochemistry
with which the helical propagation proceeds. Therefore it
resembles in many aspects the “majority rules” principle
2
000, 408, 181 – 184.
[21] J. J. D. d. Jong, L. N. Lucas, R. M. Kellog, J. H. v. Esch, B. L.
Feringa, Science 2004, 304, 278 – 281.
[22] S. J. Rowan, S. J. Cantrill, G. R. L. Cousins, J. K. M. Sanders, J. F.
Stoddart, Angew. Chem. 2002, 114, 938 – 993; Angew. Chem. Int.
Ed. 2002, 41, 898 – 952; .
23] M. Masuda, P. Jonkheijm, R. P. Sijbesma, E. W. Meijer, J. Am.
Chem. Soc. 2003, 125, 15935 – 15940.
[24] M. P. Lightfoot, F. S. Mair, R. G. Pritchard, J. E. Warren, Chem.
Commun. 1999, 1945 – 1946.
[
13]
pioneered by Green.
In summary, we have shown that it is possible to exploit
noncovalent interactions to first assemble and then transfer
chiral information to a well-defined, kinetically inert, colum-
nar architecture by using a chiral structure-directing agent.
Even though the polysorbate backbone is not completely
stereoregular, it is capable of storing complete stereochemical
information. The observation of the remarkable chiral
memory effect opens up the possibility of using noncovalent
interactions to amplify and transfer chiral information to
structurally robust nanoscale architectures.
[
[
[
[
25] L. Brunsveld, A. Schenning, M. A. C. Broeren, H. M. Janssen, J.
Vekemans, E. W. Meijer, Chem. Lett. 2000, 292 – 293.
26] M. L. Bushey, A. Hwang, P. W. Stephens, C. Nuckolls, J. Am.
Chem. Soc. 2001, 123, 8157 – 8158.
27] M. L. Bushey, A. Hwang, P. W. Stephens, C. Nuckolls, Angew.
Chem. 2002, 114, 2952 – 2955; Angew. Chem. Int. Ed. 2002, 41,
2828 – 2831; .
Received: October 18, 2004
Revised: January 26, 2005
[28] J. J. van Gorp, J. Vekemans, E. W. Meijer, J. Am. Chem. Soc.
2002, 124, 14759 – 14769.
[
[
[
[
[
[
29] H. Lamparski, D. F. OꢁBrien, Macromolecules 1995, 28, 1786 –
794.
30] M. Farina, M. Grassi, G. D. Silvestro, L. Zetta, Eur. Polym. J.
985, 21, 71 – 74.
31] W. R. Hertler, T. V. RajanBabu, D. W. Ovenall, G. S. Reddy,
D. Y. Sogah, J. Am. Chem. Soc. 1988, 110, 5841 – 5853.
1
Keywords: helical structures · polymerization · polymers ·
self-assembly · supramolecular chemistry
.
1
[
1] A. R. A. Palmans, J. A. J. M. Vekemans, E. E. Havinga, E. W.
Meijer, Angew. Chem. 1997, 109, 2763 – 2765; Angew. Chem. Int.
Ed. Engl. 1997, 36, 2648 – 2651.
32] M. M. Green, B. A. Garetz, Tetrahedron Lett. 1984, 25, 2831 –
2
832.
33] A. Matsumoto, T. Chiba, K. Oka, Macromolecules 2003, 36,
573 – 2575.
34] S. Nagahama, T. Tanaka, A. Matsumoto, Angew. Chem. 2004,
[
2] D. Philp, J. F. Stoddart, Angew. Chem. 1996, 108, 1242 – 1286;
Angew. Chem. Int. Ed. Engl. 1996, 35, 1155 – 1196.
2
[
3] J.-M. Lehn, Science 2002, 295, 2400 – 2403.
116, 3899 – 3902; Angew. Chem. Int. Ed. 2004, 43, 3811 – 3814.
[
4] D. N. Reinhoudt, M. Crego-Calama, Science 2002, 295, 2403 –
2407.
Angew. Chem. Int. Ed. 2005, 44, 2275 –2279
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
2279