10.1002/asia.202000660
Chemistry - An Asian Journal
FULL PAPER
analyzed by a ZEN imaging software. To evaluate whether the as-
synthesized SiR 8 can specifically target the mitochondria even if the
mitochondrial membrane potential (MMP) changed or vanished, 10 µg/mL
as-treated SiR 8 was firstly added into the HepG2 cells for 30 min at 37 °C.
50 nM Rho123 solution was injected into the other cell dish. After
incubated for 30 min, the cells were washed with PBS twice to remove the
unbound molecules. Afterwards, the media were replaced with fresh
DMEM containing CCCP (10 μM) and the cells were incubated for another
1 h, respectively; finally, the cells were washed and cell imaging was
performed as mentioned above.
Chem. Soc. 2012, 134, 5029-5031; c) Y. Koide, Y. Urano, K. Hanaoka, T.
Terai and T. Nagano, ACS Chem. Biol. 2011, 6, 600-608.
[9] a) J. B. Grimm, T. A. Brown, A. N. Tkachuk and L. D. Lavis, ACS Central Sci.
2017, 3, 975-985; b) C. Fischer and C. Sparr, Angew. Chem. Int. Ed. 2018,
57, 2436-2440.
[10] a) K. Umezawa, M. Yoshida, M. Kamiya, T. Yamasoba and Y. Urano, Nat.
Chem. 2017, 9, 279-286; b) T. Kanagasundaram, A. Timmermann, C. S.
Kramer and K. Kopka, Beilstein J. Org. Chem. 2019, 15, 2569-2576.
[11] H. M. McBride, M. Neuspiel and S. Wasiak, Curr. Biol. 2006, 16, 551-560.
[12] A. I. Jonckheere, J. A. Smeitink and R. J. Rodenburg, J. Inherited Metab.
Dis. 2012, 35, 211-225.
[13] X. Emily Guo, B. Ngo, A. Sandaldjian Modrek and W.-H. Lee, Curr. Drug.
Targets. 2014, 15, 2-16.
In situ quantification of mitochondrial temperature. The stained HepG2
cells were heated to the set temperature (30, 32, 34, 36, 38 and 40 °C).
When the set temperature was reached, turn on the laser light source for
snapping. In addition, at room temperature, take confocal images for the
same duration of time as control. The other way to change mitochondrial
temperature is to use chemicals. The stained cells was treated with 1 mL
DMEM culture contained 80 μM PMA. Before imaging, the redundant rea-
gents were removed by washing with PBS three times. All images were
analyzed by ImageJ software.
[14] a) X. Zhang, Q. Sun, Z. Huang, L. Huang and Y. Xiao, Mater. Chem. B.
2019, 7, 2749-2758; b) M. M. Ogle, A. D. Smith McWilliams, M. J. Ware, S.
A. Curley, S. J. Corr and A. A. Martí, J. Phys. Chem. B. 2019, 123, 7282-
7289.
[15] a) M. Homma, Y. Takei, A. Murata, T. Inoue and S. Takeoka, Chem.
Commun. 2015, 51, 6194-6197; b) H. Huang, H. Li, J.-J. Feng and A.-J.
Wang, Microchim Acta. 2017, 184, 1215-1221; c) Z. Huang, N. Li, X. Zhang,
C. Wang and Y. Xiao, Anal. Chem. 2018, 90, 13953-13959; d) J. Qiao, C.
Chen, D. Shangguan, X. Mu, S. Wang, L. Jiang and L. Qi, Anal. Chem. 2018,
90, 12553-12558; e) M. H. Lee, J. H. Han, J.-H. Lee, H. G. Choi, C. Kang
and J. S. Kim, J. Am. Chem. Soc. 2012, 134, 17314-17319; f) S. Arai,; S. C.
Lee, D. Zhai, M. Suzuki, Y. T. Chang, Sci. Rep., 2015, 4, 6701.
[16] B. Wang, X. Chai, W. Zhu, T. Wang and Q. Wu, Chem. Commun. 2014, 50,
14374-14377.
Acknowledgements
We thank the National Natural Science Foundation of China (No.
21871072 and 21775166) for financial support, the Program for
High-Level Innovation Team in Universities of Zhejiang Province,
the Natural Science Foundation for Distinguished Young Scholars
of Jiangsu Province (BK20180026).
[17] M. Poot, Y. Z. Zhang, J. A. Krämer, K. S. Wells, L. J. Jones, D. K. Hanzel,
A. G. Lugade, V. L. Singer and R. P. Haugland, J. Histochem. Cytochem.,
1996, 44, 1363-1372.
[18] C. Hansch, A. Leo and R. Taft, Chem. Rev. 1991, 91, 165-195.
[19] a) T. Bai and N. Gu, Small, 2016, 12, 4590-4610; b) L. Chen and A. Wood,
Bioelectromagnetics, 2009, 30, 583-590.
Keywords: Si-rhodamine• Dyes and Pigments•NIR emission
•PET•Cell imaging
[20] A. Weller, Pure. Appl. Chem. 1968, 16, 115-124.
[21] a) H. Lu, S. Zhang, H. Liu, Y. Wang, Z. Shen, C. Liu and X. You, J Phys.
Chem. A. 2009, 113, 14081-14086; b) H. Guo, Y. Jing, X. Yuan, S. Ji, J.
Zhao, X. Li and Y. Kan, Org. Biomol. Chem. 2011, 9, 3844-3853; c) H.
Sunahara, Y. Urano, H. Kojima and T. Nagano, J. Am. Chem. Soc. 2007,
129, 5597-5604.
[1] a) Nat. Cell. Biol. 2009, 11, 1165-1165; b) J. Zhang, R. E. Campbell, A. Y.
Ting and R. Y. Tsien, Nat. Rev. Mol. Cell. Biol. 2002, 3, 906-918.
[2] a) H. Lu, J. Mack, Y. Yang and Z. Shen, Chem. Soc. Rev. 2014, 43, 4778-
4823; b) H. Lu, S. Shimizu, J. Mack, Z. Shen and N. Kobayashi, Chem.
Asian. 2011, 6, 1026-1037; c) Y. Sun, H. Yuan, L. Di, Z. Zhou, L. Gai, X.
Xiao, W. He and H. Lu, Org. Chem. Front. 2019, 6, 3961-3968.
[22] S. Hong, X. Zhang, R. J. Lake, G. T. Pawel, Z. Guo, R. Pei and Y. Lu, Chem.
Sci. 2020, 11, 713-720.
[23] M. L. Lim, T. Minamikawa and P. Nagley, FEBS Lett. 2001, 503, 69-74.
[24] C. D. Kang, B. K. Lee, K. W. Kim, C. M. Kim, S. H. Kim and B. S. Chung,
Biochem Biophys Res. Commun. 1996, 221, 95-100.
[3] a) L. Yuan, W. Lin, K. Zheng, L. He and W. Huang, Chem. Soc. Rev. 2013,
42, 622-661; b) M. Kaur and D. H. Choi, Chem. Soc. Rev. 2015, 44, 58-77;
c) Z. Guo, Y. Ma, Y. Liu, C. Yan, P. Shi, H. Tian and W.-H. Zhu, Sci. China
Chem. 2018, 61, 1293-1300; d) J. Chin and H.-J. Kim, Coord Chem. Rev.
2018, 354, 169-181; e) V. J. Pansare, S. Hejazi, W. J. Faenza and R. K.
Prud’homme, Chem. Mater. 2012, 24, 812-827.
[25] A. M. Brouwer, Pure. Appl. Chem. 2011, 83, 2213-2228.
[26] M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G.
Scalmani, V. Barone, B. Mennucci and G. Petersson, Wallingford, CT 2009,
32, 5648-5652.
[4] a) L. M. Wysocki, J. B. Grimm, A. N. Tkachuk, T. A. Brown, E. Betzig and L.
D. Lavis, Angew. Chem. Int. Ed. 2011, 50, 11206-11209; b) L. M. Wysocki
and L. D. Lavis, Curr. Opin. Chem. Biol. 2011, 15, 752-759; c) M. Beija, C.
A. Afonso and J. M. Martinho, Chem. Soc. Rev. 2009, 38, 2410-2433.
[5] Y. Q. Sun, J. Liu, X. Lv, Y. Liu, Y. Zhao and W. Guo, Angew. Chem. Int. Ed.
2012, 51, 7634-7636.
[6] a) L. Wang, W. Du, Z. Hu, K. Uvdal, L. Li and W. Huang, Angew. Chem. Int.
Ed. 2019, 58, 14026-14043; b) T. Ikeno, T. Nagano and K. Hanaoka, Chem.
Asian. J. 2017, 12, 1435-1446; c) T. Wang, Q.-J. Zhao, H.-G. Hu, S.-C. Yu,
X. Liu, L. Liu and Q.-Y. Wu, Chem. Commun. 2012, 48, 8781-8783; d) Y.
Kushida, T. Nagano and K. Hanaoka, Analyst. 2015, 140, 685-695; e) O.
Murata, Y. Shindo, Y. Ikeda, N. Iwasawa, D. Citterio, K. Oka and Y. Hiruta,
Anal. Chem., 2020, 92, 966-974; f) E. Kozma, G. Estrada Girona, G. Paci,
E. A. Lemke and P. Kele, Chem. Commun., 2017, 53, 6696-6699.
[7] M. Fu, Y. Xiao, X. Qian, D. Zhao and Y. Xu, Chem. Commun. 2008, 15, 1780-
1782.
[8] a) T. Egawa, Y. Koide, K. Hanaoka, T. Komatsu, T. Terai and T. Nagano,
Chem. Commun. 2011, 47, 4162-4164; b) Y. Koide, Y. Urano, K. Hanaoka,
W. Piao, M. Kusakabe, N. Saito, T. Terai, T. Okabe and T. Nagano, J. Am.
7
This article is protected by copyright. All rights reserved.