H. Arslan et al. / Spectrochimica Acta Part A 67 (2007) 936–943
943
Characteristic aromatic νC–H stretching vibrations of sub-
References
−
1
stituted benzenes are expected to appear in 3050–3100 cm
frequency ranges. Our calculations confirmed the assignment of
[
[
1] W. Walter, K.D. Bode, Angew. Chem., Int. Ed. Engl. 6 (4) (1967)
81.
2] B.H. Alexander, S.I. Gertler, T.A. Oda, R.T. Brown, R.W. Ihndris, M.
Beroza, J. Org. Chem. 25 (1960) 626.
2
−
1
absorption at 3106, 3090, 3076, 3065 and 3060 cm to νC–H
stretching vibrations, which is in agreement with the litera-
ture data [27,28]. Five bands at 3042, 3030, 2993, 2963 and
[3] R. Watcher, US patent, 901053, 1990;
−1
R. Watcher, Chem. Abstr. 111 (1989) 128868a.
2
942 cm were observed in the spectrum. First three is asym-
[
[
4] G.A. Digenis, N.P. Rodis, US patent, 5539123, 1996;
G.A. Digenis, N.P. Rodis, Chem. Abstr. 125 (1996) 167993n.
5] B.K. Trivedi, US patent, 8810816, 1988;
metric νC–H stretching band and the other bands symmetric νC–H
stretching band for ethyl group. These assignments were also
supported by the literature [29,30]. The two in-plane methyl
B.K. Trivedi, Chem. Abstr. 108 (1988) 167428d.
[6] M. Oba, K. Nishiyama, Synthesis (1994) 624.
−
1
hydrogen-bending modes (1472, and 1452 cm ) are also well
established in the spectrum.
[
[
[
7] L. Quas, U. Schr o¨ der, B. Schr o¨ der, F. Dietze, L. Beyer, Solv. Extr. Ion Exch.
8 (2000) 1167.
8] L. Quas, T. Ristau, U. Schr o¨ der, F. Dietze, L. Beyer, Z. Anorg, Allg. Chem.
27 (2001) 1909.
9] A.D. Morales, H.N. De Armas, N.M. Blaton, O.M. Peeters, C.J. De Ranter,
H. Marquez, R.P. Hernandez, Acta Cryst. C 56 (2000) 1042.
1
The carbon–carbon stretching vibrations of the title com-
−
1
pound have been observed at 1598, 1582, 1437 and 1306 cm
.
6
The in-plane and out-of-plane bending vibrations of C–C group
are presented in Table 4. All these assignment are in good agree-
ment with the literatures [27,29].
[
[
[
[
10] L.A. Montiel-Ortega, S. Rojas-Lima, E. Otazo-Sanchez, R. Villagomez-
Ibarra, J. Chem. Crystallogr. 34 (2) (2004) 89.
11] G. Blewett, C. Esterhuysen, M.W. Bredenkamp, K.R. Koch, Acta Cryst. C
The identification of νC–N vibrations is a difficult task, since
the mixing of vibrations is possible in this region. However, with
the help of the animation option of GaussView 3.0 graphical
interface for gaussian programs, the νC–N vibrations are identi-
fied and assigned in this study. The IR bands appearing at 1289,
60 (2004) o862.
12] G. Blewett, M.W. Bredenkamp, K.R. Koch, Acta Cryst. C 61 (2005)
o469.
13] R.M. Ottenbrite, J. Chem. Soc. Perkin Trans. 1 (1972) 88.
−
1
[14] J.J. Ares, T.G. Urchek, C.W. Palmer, D.D. Miller, Magn. Res. Chem. 24
1986) 460.
1
δ
264 and 1232 cm are assigned to νC–N vibrations with the
for the title compound.
(
PhH
[
15] A.M. Plutin, M. Suarez, E. Ochoa, T. Machado, R. Mocelo, J.M. Concellon,
H. Rodriguez-Solla, Tetrahedron 61 (2005) 5812.
4
. Conclusions
[16] Bruker, SHELXTL (Ver. 6.10), Bruker AXS Inc., Madison, WI, USA,
002.
2
[
17] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R.
Cheeseman, J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant,
J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi,
G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara,
K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda,
O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B.
Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann,
O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala,
K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski,
S. Dapprich, A. D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D.
Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul,
S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I.
Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A.
Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W.
Wong, C. Gonzalez, J.A. Pople, Gaussian 03W, Revision C.02, Gaussian
Inc., Wallingford CT, 2004.
In this work, the crystal structure of title compound has
been described here. Also, we have calculated the geometric
parameters and vibrationalfrequencies of the O-ethyl benzoylth-
iocarbamate by using B3LYP and HF method with the standard
3
-21G and 6-31G(d) basis sets. We have used the scaling factor
values of 0.8929, 0.9613, 0.9085 and 0.9614 for HF/6-31G(d),
B3LYP/6-31G(d), HF/3-21G, and B3LYP/3-21G respectively,
to fit the theoretical results of vibration analysis with experimen-
tal ones. Scaling factors results gained seemed to be in a good
agreement with experimental ones. In particular, the results of
DFT-B3LYP method have shown better fit to experimental ones
than ab initio-HF in evaluating vibrational frequencies. The dif-
ference between experimental and calculated vibrations mode
can be considered as the difference of the state. Because it is
clear that gas state vibration frequencies are larger than in the
solid state.
[18] J.B. Foresman, E. Frisch, Exploring Chemistry with Electronic Structure
Methods: A Guide to Using Gaussian, Gaussian, Pittsburgh, PA, 1993.
[19] A.P. Scott, L. Radom, J. Phys. Chem. 100 (41) (1996) 16502.
[
20] R. Dennington, T. Keith, J. Millam, K. Eppinnett, W.L. Hovell, R.
Gilliland, GaussView, Version 3.07, Semichem Inc., Shawnee Mission, KS,
5
. Supplementary material
2003.
[
21] U. Schr o¨ der, L. Beyer, F. Dietze, R. Richter, S. Schmidt, E. Hoyer, J. Prakt.
Chem. 337 (1995) 184.
Cambridge Crystallographic Data Centre. Copies of the data
CCDC-613207] can be obtained free of charge on application
to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [Fax: +44
22] H. Arslan, U. Fl o¨ rke, N. K u¨ lc u¨ , Acta Cryst. E 59 (2003) o641.
[
23] H. Arslan, U. Fl o¨ rke, N. K u¨ lc u¨ , J. Chem. Cryst. 33 (12) (2003) 919.
[
24] H. Arslan, U. Fl o¨ rke, N. K u¨ lc u¨ , Turk. J. Chem. 28 (2004) 673.
[25] A.D. Morales, H.N. de Armas, N.M. Blaton, O.M. Peeters, C.J. De Ranter,
H. M a´ rquez, R.R. Hern a´ ndez, Acta Cryst. C 56 (2000) 503.
[
1
[26] Spartan 04, Wavefunction Inc., Irvine, CA, USA, 2004.
[
27] W. Zhou, L. Zhu, Y. Zhang, Z. Yu, L. Lu, X. Yang, Vib. Spec. 36 (1) (2004)
3.
28] R. Zwarich, J. Smolarek, L. Goodman, J. Mol. Spectrosc. 38 (1971)
36.
[29] H. Arslan, T. Ozpozan, Asian J. Chem. 18 (3) (2006) 1815.
30] V. Krishnakumar, R. Ramasamy, Spectrochim. Acta Part A 62 (2005) 570.
7
Acknowledgement
[
3
This work was supported by the Mersin University Research
Fund (project no. BAP.ECZ.F.TB.(HA).2006-1).
[