Communications
The s bond between the major fragment 18 and subunit 4
was formed by a B-alkyl Suzuki–Miyaura cross-coupling
reaction. The reactive trialkyl boronate species, prepared
Smith III, S. B. Horwitz, Chem. Biol. 2001, 8, 843 – 855; g) M.
Kalesse, ChemBioChem 2000, 1, 171 – 175; h) E. ter Haar, R. J.
Kowalski, E. Hamel, C. M. Lin, R. E. Longley, S. P. Gunasekera,
H. S. Rosenkranz, B. W. Day, Biochemistry 1996, 35, 243 – 250;
i) R. Balachandran, E. ter Haar, M. J. Welsh, S. G. Grant, B. W.
Day, Anticancer Drugs 1998, 9, 67 – 76.
[
29]
from alkyl iodide 4 with tBuLi and B-methoxy-9-BBN,
[
30]
reacted with 18 under [Pd(dppf)Cl ] and AsPh conditions
2
3
to give the fully elaborated discodermolide carbon skeleton
[
3] a) G. S. Huang, L. Lopez-Barcons, B. S. Freeze, A. B. Smith III,
G. L. Goldberg, S. B. Horwitz, H. M. McDaid, Clin. Cancer Res.
2006, 12, 298 – 304; b) L. A. Martello, H. M. McDaid, D. L. Regl,
C.-P. H. Yang, D. Meng, T. R. R. Pettus, M. D. Kaufman, H.
Arimoto, S. J. Danishefsky, A. B. Smith III, S. B. Horwitz, Clin.
Cancer Res. 2000, 6, 1978 – 1987.
1
9 in 60% yield.
After cleavage of the C19 triethylsilyl group and installa-
[
31]
tion of the carbamate moiety, the final global deprotection
of all protecting groups, with concomitant lactonization, was
performed in a 4n HCl solution in THF. Purification of the
crude product by flash chromatography (CH Cl /MeOH
[
4] For major publications on total synthesis, see: a) J. B. Nerenberg,
D. T. Hung, P. K. Somers, S. L. Schreiber, J. Am. Chem. Soc.
2
2
8
0:20) afforded (+)-discodermolide (1) in 70% yield.
The spectroscopic data observed for our synthetic 1 ( H
1993, 115, 12621 – 12622; b) D. T. Hung, J. B. Nerenberg, S. L.
1
Schreiber, J. Am. Chem. Soc. 1996, 118, 11054 – 11080; c) A. B.
Smith III, Y. Qiu, D. R. Jones, K. Kobayashi, J. Am. Chem. Soc.
1995, 117, 12011 – 12012; d) A. B. Smith III, T. J. Beauchamp,
M. J. LaMarche, M. D. Kaufman, Y. Qiu, H. Arimoto, D. R.
Jones, K. Kobayashi, J. Am. Chem. Soc. 2000, 122, 8654 – 8664,
and references therein; e) S. S. Harried, G. Yang, M. A. Strawn,
D. C. Myles, J. Org. Chem. 1997, 62, 6098 – 6099; f) S. S. Harried,
C. P. Lee, G. Yang, T. I. H. Lee, D. C. Myles, J. Org. Chem. 2003,
1
3
and C NMR spectroscopy and high-resolution mass spec-
trometry) were identical in all respects with those reported for
the natural material or another synthetic discodermolide. The
specific optical rotation, [a] = + 16.2 degcm g dm (c =
1
2
D
0
3
ꢀ1
ꢀ1
ꢀ
3
.0 gcm , MeOH), was very close to previously reported
values. In addition, in vitro cytotoxicity levels comparable to
[
1,2]
literature data
were obtained.
68, 6646 – 6660; g) J. A. Marshall, Z.-H. Lu, B. A. Johns, J. Org.
In conclusion, the total synthesis of discodermolide was
achieved in 21 linear steps with 1.6% overall yield from
commercially available compounds (8 or 11). We have shown
homoallylic Z-O-enecarbamate alcohols to be powerful tools
in the total synthesis of multifunctional compounds. Allyla-
tion reaction of a-(S)-methyl aldehydes 6a–c with enantioen-
riched R-a-oxygenated crotyltitanium 5, conveniently pre-
pared in situ, ensured the stereocontrolled elaboration, for
each subunit, of syn–anti methyl–hydroxy–methyl triads
connected to a Z-O-enecarbamate. This particular group
allowed direct and easy access to either a triple bond or
terminal Z diene functions. This efficient and versatile syn-
thesis delivered the natural product, and we are currently
looking to extend this methodology to the preparation of
original, unnatural discodermolide analogues.
Chem. 1998, 63, 817 – 823; h) J. A. Marshall, B. A. Johns, J. Org.
Chem. 1998, 63, 7885 – 7892; i) I. Paterson, G. J. Florence, K.
Gerlach, J. P. Scott, Angew. Chem. 2000, 112, 385 – 388; Angew.
Chem. Int. Ed. 2000, 39, 377 – 380; j) I. Paterson, G. J. Florence,
Eur. J. Org. Chem. 2003, 2193 – 2208; k) I. Paterson, I. Lyothier,
J. Org. Chem. 2005, 70, 5494 – 5507, and references therein;
l) S. J. Mickel, D. Niederer, R. Daeffler, A. Osmani, E. Kuesters,
E. Schmid, K. Schaer, R. Gamboni, W. Chen, E. Loeser, F. R.
Kinder, Jr., K. Konigsberger, K. Prasad, T. M. Ramsey, O. Repi ˇc ,
R.-M. Wang, G. Florence, I. Lyothier, I. Paterson, Org. Process
Res. Dev. 2004, 8, 122 – 130, and four precedent papers; m) S. J.
Mickel, R. Daeffler, W. Prikoszovich, Org. Process Res. Dev.
2005, 9, 113 – 120; n) O. Loiseleur, G. Koch, J. Cercus, F. Schürch,
Org. Process Res. Dev. 2005, 9, 259 – 271; o) A. Arefolov, J. S.
Panek, J. Am. Chem. Soc. 2005, 127, 5596 – 5603, and references
therein.
[5] a) D. Hoppe, Angew. Chem. 1984, 96, 930 – 946; Angew. Chem.
Int. Ed. Engl. 1984, 23, 932 – 948; b) D. Hoppe, O. Zschage,
Angew. Chem. 1989, 101, 67 – 69; Angew. Chem. Int. Ed. Engl.
1989, 28, 69 – 71; c) D. Hoppe, O. Zschage, Tetrahedron 1992, 48,
Received: November 14, 2006
Published online: January 30, 2007
8389 – 8392.
[
6] a) V. Fargeas, P. Le MØnez, I. Berque, J. Ardisson, A. Pancrazi,
Tetrahedron 1996, 52, 6613 – 6634; b) I. Berque, P. Le MØnez, P.
Razon, C. Anies, A. Pancrazi, J. Ardisson, A. Neuman, T.
PrangØ, J.-D. Brion, Synlett 1998, 1132 – 1134; c) I. Berque, P.
Le MØnez, P. Razon, A. Pancrazi, J. Ardisson, J.-D. Brion, Synlett
Keywords: allylation · metalation · natural products ·
rearrangement · total synthesis
.
1
998, 1135 – 1137; d) I. Berque, P. Le MØnez, P. Razon, J.
[
1] a) S. P. Gunasekera, M. Gunasekera, R. E. Longley, G. K.
Schulte, J. Org. Chem. 1990, 55, 4912 – 4915; b) S. P. Gunasekera,
M. Gunasekera, R. E. Longley, G. K. Schulte, J. Org. Chem.
Mahuteau, J.-P. FØrØzou, A. Pancrazi, J. Ardisson, J.-D. Brion,
J. Org. Chem. 1999, 64, 373 – 381.
[
7] D. Hoppe, T. Hense, Angew. Chem. 1997, 109, 2376 – 2410;
Angew. Chem. Int. Ed. Engl. 1997, 36, 2282 – 2316.
8] T. Fujisawa, Y. Kurita, M. Kawashima, T. Sato,Chem. Lett. 1982,
1
991, 56, 1346; c) S. P. Gunasekera, G. K. Paul, R. E. Longley,
R. A. Isbruker, S. A. Pomponi, J. Nat. Prod. 2002, 65, 1643 –
648.
[
1
1
641 – 1642.
[
2] For major reports on biological studies, see: a) V. M. Sµnchez-
Pedregal, K. Kubicek, J. Meiler, I. Lyothier, I. Paterson, T.
Carlomagno, Angew. Chem. 2006, 118, 7548 – 7554; Angew.
Chem. Int. Ed. 2006, 45, 7388 – 7394; b) S. Xia, C. S. Kenesky,
P. V. Rucker, A. B. Smith III, G. A. Orr, S. B. Horwitz, Bio-
chemistry 2006, 45, 11762 – 11775; c) S. Honore, K. Kamath, D.
Braguer, L. Wilson, C. Briand, M. A. Jordan, Mol. Cancer Ther.
[9] a) P. Kocienski, S. Wadman, K. Cooper, J. Am. Chem. Soc. 1989,
111, 2363 – 2365; b) P. Kocienski, C. Barber, Pure Appl. Chem.
1990, 62, 1933 – 1940.
[10] a) P. Le MØnez, V. Fargeas, I. Berque, J. Poisson, J. Ardisson, J.-
Y. Lallemand, A. Pancrazi, J. Org. Chem. 1995, 60, 3592 – 3599;
b) V. Fargeas, P. Le MØnez, I. Berque, J. Ardisson, A. Pancrazi,
Tetrahedron 1996, 52, 6613 – 6634.
2003, 2, 1303 – 1311; d) L. He, G. A. Orr, S. B. Horwitz, Drug
Discov. Today 2001, 6, 1153 – 1164; e) L. He, H. Y. Chia-Ping,
S. B. Horwitz, Mol. Cancer Ther. 2001, 1, 3 – 10; f) L. A.
Martello, M. J. LaMarche, L. He, T. J. Beauchamp, A. B.
[11] M. A. Evans, J. P. Morken, Org. Lett. 2005, 7, 3371 – 3373.
[12] a) E. de Lemos, F.-H. PorØe, J.-F. Betzer, A. Pancrazi, J.
Ardisson, unpublished results; b) K. Jarowicki, P. Kocienski, S.
1
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2007, 46, 1917 –1921