10
G.A. Gamal, M.I. Azad / Journal of Physics and Chemistry of Solids 66 (2005) 5–10
References
and the reproducibility of the results for all samples,
permit one to assume that this line is due to exciton
absorption.
[1] M.A. Alzhdanov, M.D. Nadzhafzad, Z.Y. Seidov, Phys. Solid State
20–21 (1) (1999) 41.
[2] O.Z. Alekperov, M.Z. Zarabakiev, Inorg. Mater. 10 (1998) 971–975.
[3] X.Y. Chen, X.Y. Hou, X.A. Cao, X.M. Ding, L.Y. Chen, G.Q. Zhao,
X. Wang, J. Cryst. Growth 1-2 (1997) 151–156.
[4] N. Okamoto, H. Tanka, Mater. Sci. Semi-Cond. Process. 1 (1999)
13–18.
The fundamental absorption edge in most semiconduc-
tors follows an exponential law. Above the exponential tail,
the absorption coefficient of semiconductor has been
observed to obey the equation
[5] M.R. Lezell, P. O’Brien, D.J. Otway, J.H. Park, Chem. Mater. 12
(1999) 3430.
n
aZu Z Bðhu KEgÞ
[6] S. Suh, D.M. Hoffman, Chem. Mater. 9 (2000) 2794.
[7] A. Aydinli, N.M. Gasanly, K. Goksen, J. Appl. Phys. 12 (2000)
7144–7149.
where aZu is the absorption coefficient of an angular
frequency of uZ2py, B is a constant, and n is an index
which can assume the values 1/2, 3/2, 2, and 3, depending
on the nature of the electronic transition responsible for
the absorption. It is well established that nZ1/2 corresponds
to the direct allowed transition (high-energy part of the
spectra), nZ3/2 to a forbidden direct transition, nZ2 to an
indirect allowed transition (low-energy part of the spectra)
and nZ3 to a forbidden direct transitions [22,23].
[8] N.M. Gasanly, A. Aydinli, H. Ozkan, C. Kocabas, Solid State
Commun. 3 (2000) 147–151.
[9] J.D. Beasley, Appl. Optics 6 (1994) 1000–1003.
[10] L.S. Griscom, J.L. Adam, K. Binnemans, J. Non-Cryst. Solids 257
(1999) 383–389.
[11] A. Segura, A. Chevy, Phys. Rev. B—Condens. Matter 7 (1994)
4601–4604.
[12] G.A. Gamal, M.M. Nassary, S.A. Hussein, Cryst. Res. Technol. 27 (7)
(1992) 997–1002.
For the determination of the energy gaps, Eg, of the GaS
[13] S. McDevitt, B.Em. Deam, D.G. Ryding, F.J. Scheltens, S. Mahajan,
Mater. Lett. 4 (1986) 451.
substance from the absorption spectra, we have plotted K1/2
,
K and K2 (where K is the experimental absorption
coefficient at 300 K), against the photon energy EZhn.
We only found that K1/2(E) approaches a straight line over
much the largest range of E values. When this line is
extrapolated to zero, which corresponds to the thicknesses:
3.73, 2.51, 1.22 and 0.6 mm and these yields’ energy gap
values: 2.49, 2.56, 2.55, 2.58 eV, respectively.
[14] Y.Y. Loginov, P.D. Brown, N. Thompson, G.L. Russell, J. Wood,
Microscopy of semiconducting meterials in: A.G. Gullis,
I.L. Hutchison (Eds.),, Institute of Physics Conference Series 100,
Institute of Physics, Bristal, 1989, p. 433.
[15] R.L. Hargreaves, P.R. Mason, J.C. Anderson, J. Phys. D: Appl. Phys.
7 (1974) 85.
[16] S.R. Ovshinsky, Phys. Rev. Lett. 21 (1968) 1450.
[17] A.T. Nagat, S.A. Hussein, Y.H. Gameel, G.A. Gamal, Phys. State Sol.
(a) 121 (1990) K201.
[18] M.M. Nassary, S.A. Hussein, A.E. Belal, H.A. El-Sheirh, Phys. State
Sol. (a) 145 (1994) 151.
Acknowledgements
[19] V.F. Zhitor, N.A. Moldovyan, S.I. Redautson, Sov. Phys. Semicond.
13 (15) (1979) 495.
[20] S.M.S. Ryvkin, Potenitiometric Effects Semicond. (1964).
[21] A.T. Nagat, G.A. Gamal, Y.H. Gameel, N.M. Mohamed, Phys. State
Sol. (a) 119 (1990) K47.
Because all this work was done in the State University of
New York (SUNY), one of the authors (Prof. Gamal GA)
wishes to thank {Prof. John A. Fallon} (president of SUNY)
for his limitless support during the work.
[22] T.S. Moss, Photoconductivity Electrons (1951).
[23] R.A. Smith, Philos. Mag. Suppl. 2 (1953) 81.