Communication
ChemComm
C. K. W. Jim, J. W. Y. Lam, M. M. F. Yuen, G. Ramos-Ortiz and
B. Z. Tang, J. Mater. Chem., 2012, 22, 232.
As shown in Fig. 5c, the self-assembly of AP-TPE with C12-2 formed
spherical aggregates with diameters of 400–600 nm after the second
acidification. The spherical aggregates showed a clear contrast
between the exterior and interior, which was consistent with the
typical feature of vesicles. After the third acidification, many more
legible vesicles were observed with diameters ranging from ca.
500 to 700 nm (Fig. 5d). To confirm the vesicular structure,
scanning electron microscopy (SEM) measurement was further
performed (Fig. 5e and f). Several collapsed and ruptured vesicles
were captured. Furthermore, the inside and outside of ruptured
vesicles were clearly observed. Usually, vesicular aggregates origi-
nated from the solvophobic self-assembly of molecules in a specific
solvent.12 In our case, DB24C8 bound with DBA to form polar
groups after the first acidification. As a result of the solvophobic
effect, the complex formed the micelle and the polar groups were
located on the inner side of the micelle. The subsequent acid–base
reaction led to the generation of NaCl, which further promoted the
aggregation due to the salting-out effect. Until the next acidifica-
tion, both the interaction between DB24C8 and DBA and the
salting-out effect modified the solvophilic–solvophobic effect and
the system reached a new balance, and thus a highly ordered
vesicle was formed. These changes were consistent with the step-
wise enhanced fluorescence and blue-shifted emission peaks.11 To
the best of our knowledge, such a morphological transition-
induced step-by-step enhancement has seldom been brought out
in the previous AIE/AIEE systems.3,4,8,11
4 (a) J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok,
X. Zhan, Y. Liu, D. Zhu and B. Z. Tang, Chem. Commun., 2001, 1740;
(b) B.-K. An, S.-K. Kwon, S.-D. Jung and S. Y. Park, J. Am. Chem. Soc.,
2002, 124, 14410; (c) L. Liu, G. Zhang, J. Xiang, D. Zhang and D. Zhu,
Org. Lett., 2008, 10, 4581; (d) J. He, B. Xu, F. Chen, H. Xia, K. Li, L. Ye
and W. Tian, J. Phys. Chem. C, 2009, 113, 9892; (e) Q. Chen, N. Bian,
C. Cao, X.-L. Qiu, A.-D. Qi and B.-H. Han, Chem. Commun., 2010,
46, 4067; ( f ) H. Lu, B. Xu, Y. Dong, F. Chen, Y. Li, Z. Li, J. He, H. Li
and W. Tian, Langmuir, 2010, 26, 6838; (g) X. Wang, J. Hu, T. Liu,
G. Zhang and S. Liu, J. Mater. Chem., 2012, 22, 8622; (h) Z. Wang,
S. Chen, J. W. Y. Lam, W. Qin, R. T. K. Kwok, N. Xie, Q. Hu and
B. Z. Tang, J. Am. Chem. Soc., 2013, 135, 8238; (i) Z. Wang, B. Xu,
L. Zhang, J. Zhang, T. Ma, J. Zhang, X. Fu and W. Tian, Nanoscale,
2013, 5, 2065; ( j) R. Yoshii, A. Hirose, K. Tanaka and Y. Chujo, J. Am.
Chem. Soc., 2014, 136, 18131.
5 (a) P. Cordier, F. Tournilhac, C. Soulie-Ziakovic and L. Leibler,
Nature, 2008, 451, 977; (b) M. Burnworth, L. Tang, J. R. Kumpfer,
A. J. Duncan, F. L. Beyer, G. L. Fiore, S. J. Rowan and C. Weder,
Nature, 2011, 472, 334; (c) S. Seiffert and J. Sprakel, Chem. Soc. Rev.,
2012, 41, 909; (d) S.-L. Li, T. Xiao, C. Lin and L. Wang, Chem. Soc.
Rev., 2012, 41, 5950; (e) T. Aida, E. W. Meijer and S. I. Stupp, Science,
2012, 335, 813; ( f ) B. C. Tee, C. Wang, R. Allen and Z. Bao, Nat.
Nanotechnol., 2012, 7, 825; (g) Z. Huang, L. Yang, Y. Liu, Z. Wang,
O. A. Scherman and X. Zhang, Angew. Chem., Int. Ed., 2014, 53, 5351;
(h) P. Wei, X. Yan and F. Huang, Chem. Soc. Rev., 2015, 44, 815.
6 (a) B. Yu, B. Wang, S. Guo, Q. Zhang, X. Zheng, H. Lei, W. Liu, W. Bu,
Y. Zhang and X. Chen, Chem. – Eur. J., 2013, 19, 4922; (b) B. Yu,
S. Guo, L. He and W. Bu, Chem. Commun., 2013, 49, 3333; (c) S. Guo,
J. Zhang, B. Wang, Y. Cong, X. Chen and W. Bu, RSC Adv., 2014,
4, 51754; (d) L. He, J. Liang, Y. Cong, X. Chen and W. Bu, Chem.
Commun., 2014, 50, 10841.
7 X. Ji, Y. Yao, J. Li, X. Yan and F. Huang, J. Am. Chem. Soc., 2013,
135, 74.
In summary, we have confirmed in our attempt that the
complexation of DB24C8 and DBA groups can suppress the motion
of the TPE moiety and thus activate the AIEE feature of AP-TPE.
Particularly, the reduplicative complexation of AP-TPE and C12-2Hꢀ
Cl not only enhances the fluorescence remarkably, but also induces
a morphological transformation from micellar to vesicular. More-
over, it is emphasized that such acid–base responsive vesicular
assembly/disassembly has a potential for encapsulation and release
of small molecules such as drugs and dyes.
This work was supported by the NSFC (51173073 and
J1103307), the Fundamental Research Funds for the Central
Universities (lzujbky-2014-74) and the Open Project of State Key
Laboratory of Supramolecular Structure and Materials of Jilin
University (sklssm201502).
8 (a) P. Wang, X. Yan and F. Huang, Chem. Commun., 2014, 50, 5017;
(b) J. Wu, S. Sun, X. Feng, J. Shi, X.-Y. Hu and L. Wang, Chem.
Commun., 2014, 50, 9122; (c) N. Song, D.-X. Chen, M.-C. Xia,
X.-L. Qiu, K. Ma, B. Xu, W. Tian and Y.-W. Yang, Chem. Commun.,
2015, 51, 5526.
9 (a) Y. Hong, S. Chen, C. W. T. Leung, J. W. Y. Lam, J. Liu, N.-W.
Tseng, R. T. K. Kwok, Y. Yu, Z. Wang and B. Z. Tang, ACS Appl. Mater.
Interfaces, 2011, 3, 3411; (b) E. Wang, J. W. Y. Lam, R. Hu, C. Zhang,
Y. S. Zhao and B. Z. Tang, J. Mater. Chem. C, 2014, 2, 1801;
(c) J. Huang, Y. Jiang, J. Yang, R. Tang, N. Xie, Q. Li, H. S. Kwok,
B. Z. Tang and Z. Li, J. Mater. Chem. C, 2014, 2, 2028.
10 (a) P. R. Ashton, P. J. Campbell, E. J. T. Chrystal, P. T. Glink,
S. Menzer, D. Philp, N. Spencer, J. F. Stoddart, P. A. Tasker and
D. J. Williams, Angew. Chem., Int. Ed. Engl., 1995, 34, 1865;
(b) A. G. Kolchinski, D. H. Busch and N. W. Alcock, J. Chem. Soc.,
Chem. Commun., 1995, 1289; (c) M. Han, H.-Y. Zhang, L.-X. Yang,
Q. Jiang and Y. Liu, Org. Lett., 2008, 10, 5557; (d) H.-B. Cheng,
H.-Y. Zhang and Y. Liu, J. Am. Chem. Soc., 2013, 135, 10190;
(e) S. Dong, B. Zhang, D. Xu, X. Yan, M. Zhang and F. Huang, Adv.
Mater., 2012, 24, 3191; ( f ) L. Gao, D. Xu and B. Zheng, Chem.
Commun., 2014, 50, 12142.
Notes and references
11 (a) X. Wang, J. Hu, T. Liu, G. Zhang and S. Liu, J. Mater. Chem., 2012,
22, 8622; (b) Z. Zhao, J. W. Y. Lam and B. Z. Tang, J. Mater. Chem.,
2012, 22, 23726; (c) J. Ma, T. Lin, X. Pan and W. Wang, Chem. Mater.,
2014, 26, 4221; (d) W. Bai, Z. Wang, J. Tong, J. Mei, A. Qin, J. Z. Sun
and B. Z. Tang, Chem. Commun., 2015, 51, 1089.
12 (a) W. Bu, S. Uchida and N. Mizuno, Angew. Chem., Int. Ed., 2009,
48, 8281; (b) L. He, S. Bi, H. Wang, B. Ma, W. Liu and W. Bu,
Langmuir, 2012, 28, 14164; (c) Q. Zhang, L. He, H. Wang, C. Zhang,
W. Liu and W. Bu, Chem. Commun., 2012, 48, 7067; (d) P. Yin, T. Li,
R. S. Forgan, C. Lydon, X. Zuo, Z. N. Zheng, B. Lee, D. Long,
L. Cronin and T. Liu, J. Am. Chem. Soc., 2013, 135, 13425.
1 (a) S. W. Thomas, G. D. Joly and T. M. Swager, Chem. Rev., 2007,
107, 1339; (b) T. L. Andrew and T. M. Swager, J. Polym. Sci., Part B:
Polym. Phys., 2011, 49, 476; (c) B. Liu and G. C. Bazan, Conjugated
Polyelectrolytes: Fundamentals and Applications, Wiley, 2013;
(d) K. Mu¨llen, J. R. Reynolds and T. Masuda, Conjugated Polymers:
A Practical Guide to Synthesis, RSC, 2014.
2 (a) S. A. Jenekhe and J. A. Osaheni, Science, 1994, 265, 765; (b) B. Valeur,
M. N. Berberan-Santos, Molecular Fluorescence: Principles and Applications,
Wiley-VCH Verlag & Co., Weinheim, Germany, 2nd edn, 2013.
3 (a) R. Hu, N. L. C. Leung and B. Z. Tang, Chem. Soc. Rev., 2011,
40, 5361; (b) R. Hu, J. L. Maldonado, M. Rodriguez, C. Deng,
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2015