Please do not adjust margins
ChemComm
Page 4 of 4
DOI: 10.1039/C6CC03149H
Journal Name
COMMUNICATION
nitrile, were successfully reduced to aniline products in good
to excellent selectivity (entries 14-16), highlighting the great
chemoselectivity of the Co-based porous nanocatalyst and
remarkable advantage compared to that of noble metal-based
catalysts. The –CN and –C=O groups attached to the benzene
with electronic/conjugation effect might also partially
contribute to the great catalytic selectivity. To our delight, the
tandem reaction can be further extended to simple aliphatic
nitro compounds, which were converted to related primary
amines with high yields in 2 h (entries 17-18). These results
again demonstrate that, when coupling with NH3BH3
dehydrogenation to afford hydrogen source, the Co-500-3 h
catalyst is highly efficient and chemoselective for the reduction
of diverse nitro compounds to corresponding amines.
Notes and references
1
(a) N. Ono, The Nitro Group in Organic Synthesis, Wiley-VCH,
New York, 2001; (b) R. S. Downing, P. J. Kunkeler and H. van
Bekkum, Catal. Today, 1997, 37, 121; (c) A. Corma and P.
Serna, Science, 2006, 313, 332; (d) H.-U. Blaser, H. Steiner
and M. Studer, ChemCatChem, 2009, 1, 210.
2
3
(a) S. Nishimura, Heterogeneous Catalytic Hydrogenation,
John Wiley & Sons, 2001; (b) B. Cornils and W. A. Herrmann,
Applied Homogeneous Catalysis with Organometallic
Compounds, Wiley-VCH, Weinheim, Germany, 2nd edn, 2002.
(a) R. V. Jagadeesh, A.-E. Surkus, H. Junge, M.-M. Pohl, J.
Radnik, J. Rabeah, H. Huan, V. Schünemann, A. Brückner and
M. Beller, Science, 2013, 342, 1073; (b) Z. Wei, J. Wang, S.
Mao, D. Su, H. Jin, Y. Wang, F. Xu, H. Li and Y. Wang, ACS
Catal., 2015,
5, 4783; (c) R. K. Rai, A. Mahata, S.
Mukhopadhyay, S. Gupta, P.-Z. Li, K. T. Nguyen, Y. Zhao, B.
Pathak and S. K. Singh, Inorg. Chem., 2014, 53, 2904.
(a) H.-C. Zhou, J. R. Long and O. M. Yaghi, Chem. Rev., 2012,
112, 673; (b) H.-C. Zhou and S. Kitagawa, Chem. Soc. Rev.,
2014, 43, 5415.
With the above results, a possible mechanism for the
reduction of nitrobenzene catalyzed by Co-CoO@N-doped
porous carbon can be proposed (Scheme S1, ESI†).3c The
reduction of nitrobenzene to aniline, via nitrosobenzene and
phenylhydroxylamine, is considered to be a favorable pathway.
At first, two fast steps take place, in which nitrobenzene is
reduced to nitrosobenzenze, subsequently the hydrogenation
of nitrosobenzenze results in phenylhydroxylamine, by active
hydrogen from NH3BH3 or its derived H2. Finally, the
rate-determining step occurs by the transformation from the
intermediate to aniline. During the process, the Co-500-3 h
catalyst featuring hierarchical pores would benefit the
transportation of the substrate, intermediates and product.
In summary, the direct pyrolysis of ZIF-67 leads to
Co-CoO@N-doped porous carbon nanocomposites. When the
optimized catalyst, Co-500-3 h, was applied to a tandem
process of NH3BH3 dehydrogenation and subsequent
hydrogenation of nitro compounds, strikingly, the reduction
reaction rate increases exponentially (1100 times higher),
compared to that using 1 bar H2. Moreover, the stable and
inexpensive Co-500-3 h exhibits high chemoselectivity and
magnetic recyclability in the reduction of a variety of aliphatic
and aromatic nitro compounds. In addition to the excellence of
the catalyst, the key to the sharp enhancement in the reaction
rate is also attributed to the rapid hydrogen generation from
NH3BH3, which enables high-concentration hydrogen
distributed throughout the reaction solution, and greatly
increases the probability of the contact between hydrogen and
nitro compounds, thus boosting the reaction activity. In
contrast to the traditional reduction of nitro compounds with
high-pressure hydrogen, the current tandem route at room
temperature is not only much more efficient but also much
safer, as stored/pressurized hydrogen is not necessary. On the
whole, the pyrolysis of MOF reported here is a facile and
versatile approach to afford nanocomposite catalysts for
diverse reactions, and the tandem catalysis strategy in current
work might open up an avenue to the boosting of catalytic
efficiency in many other reactions.
4
5
(a) H.-L. Jiang, B. Liu, Y.-Q. Lan, K. Kuratani, T. Akita, H.
Shioyama, F. Zong and Q. Xu, J. Am. Chem. Soc., 2011, 133
,
11854; (b) T. K. Kim, K. J. Lee, J. Y. Cheon, J. H. Lee, S. H. Joo
and H. R. Moon, J. Am. Chem. Soc., 2013, 135, 8940; (c) J.-K.
Sun and Q. Xu, Energy Environ. Sci., 2014, 7, 2071.
6
(a) S. Q. Ma, G. A. Goenaga, A. V. Call and D.-J. Liu, Chem.
Eur. J., 2011, 17, 2063; (b) Y.-X. Zhou, Y.-Z. Chen, L. Cao, J. Lu
and H.-L. Jiang, Chem. Commun., 2015, 51, 8292; (c) Y.-Z.
Chen, C. Wang, Z.-Y. Wu, Y. Xiong, Q. Xu, S.-H. Yu and H.-L.
Jiang, Adv. Mater., 2015, 27, 5010; (d) S. Zhao, H. Yin, L. Du,
L. He, K. Zhao, L. Chang, G. Yin, H. Zhao, S. Liu and Z. Tang,
ACS Nano, 2014,
and Y. Li, ACS Catal., 2015,
R. Zou and Q. Xu, Energy Environ. Sci., 2015,
8
, 12660; (e) W. Zhong, H. Liu, C. Bai, S. Liao
, 1850; (f) W. Xia, A. Mahmood,
, 1837.
5
8
7
(a) P. Chen, Z. Xiong, J. Luo, J. Lin and K. L. Tan, Nature, 2002,
420, 302; (b) W. Grochala and P. P. Edwards, Chem. Rev.,
2004, 104, 1283; (c) C. W. Hamilton, R. T. Baker, A. Staubitz
and I. Manners, Chem. Soc. Rev., 2009, 38, 279; (d) J. Huang,
Y. Tan, J. Su, Q. Gu, R. Černý, L. Ouyang, D. Sun, X. Yu and M.
Zhu, Chem. Commun., 2015, 51, 2794; (e) L. Ouyang, J. Tang,
Y. Zhao, H. Wang, X. Yao, J. Liu, J. Zou and M. Zhu, Sci. Rep.,
2015, 5, 10776; (f) L. Z. Ouyang, X. S. Yang, M. Zhu, J. W. Liu,
H. W. Dong, D. L. Sun, J. Zou and X. D. Yao, J. Phys. Chem. C,
2014, 118, 7808; (g) M. Zhu, H. Wang, L. Z. Ouyang and M. Q.
Zeng, Int. J. Hydrogen Energy, 2006, 31, 251.
8
9
(a) M. Chandra and Q. Xu, J. Power Sources, 2006, 156, 190;
(b) U. B. Demirci and P. Miele, Energy Environ. Sci., 2009,
627; (c) H.-L. Jiang, S. K. Singh, J.-M. Yan, X.-B. Zhang and Q.
Xu, ChemSusChem, 2010, , 541; (d) M. Zahmakıran, Y.
Tonbul and S. Özkar, J. Am. Chem. Soc., 2010, 132, 6541; (e)
Q. Yao, Z.-H. Lu, Y. Wang, X. Chen and G. Feng, J. Phys. Chem.
C, 2015, 119, 14167; (f) Z. Zhang, Z.-H. Lu, H. Tan, X. Chen
and Q. Yao, J. Mater. Chem. A, 2015,
(a) H. Göksu, S. F. Ho, Ö. Metin, K. Korkmaz, A. M. Garcia, M.
S. Gültekin and S. Sun, ACS Catal., 2014, , 1777; (b) Q.-H.
2,
3
3, 23520.
4
Yang, Y.-Z. Chen, Z. U. Wang, Q. Xu and H.-L. Jiang, Chem.
Commun., 2015, 51, 10419. (c) C. E. Hartmann, V. Jurčík, O.
Songis and C. S. J. Cazin, Chem. Commun., 2013, 49, 1005.
10 R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M.
O'Keeffe and O. M. Yaghi, Science, 2008, 319, 939.
11 (a) M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. M.
Lau, A. R. Gerson and R. St. C. Smart, Appl. Surf. Sci., 2011,
257, 2717; (b) J. Zhu, K. Kailasam, A. Fischer and A. Thomas,
This work was supported by the NSFC (21371162, 51301159,
21521001), the 973 program (2014CB931803), NSF of Anhui
Province (1408085MB23), the Recruitment Program of Global
Youth Experts and the Fundamental Research Funds for the
Central Universities (WK2060190026, WK2060190065).
ACS Catal., 2011, 1, 342.
12 (a) S. B. Kalidindi, M. Indirani, and B. R. Jagirdar, Inorg.
Chem., 2008, 47, 7424; (b) H.-L. Jiang, T. Akita and Q. Xu,
Chem. Commun., 2011, 47, 10999.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 4
Please do not adjust margins