4
(a) R. S. H. Liu and G. S. Hammond, Proc. Natl. Acad. Sci. USA, 2000,
97, 11153; (b) R. S. H. Liu, Acc. Chem. Res., 2001, 34, 555; (c) R. S.
torsional motions about the two former double bonds in the diene
moiety that convert cc-DPB to tt-DPB. Volume demand is
minimized because most of the motion is confined to the diene
unit, which can be viewed in the lowest singlet excited state as a
H. Liu and G. S. Hammond, Chem.–Eur. J., 2001, 7, 4537; (d) R. S.
H. Liu, Pure Appl. Chem., 2002, 74, 1391; (e) R. S. H. Liu and
G. S. Hammond, Photochem. Photobiol. Sci., 2003, 2, 835; (f) R. S.
H. Liu and G. S. Hammond, in Handbook of Organic Photochemistry
and Photobiology, ed. W. M. Horspool, F. Lenci, CRC Press: London,
1,4-biradicaloid or zwitterionic species, with the phenyl groups
held stationary. However, our observation of exclusive cc-DPB to
tt-DPB photoisomerization in the solid state (crystals or powder)
in a crystal to crystal reaction, albeit in kinetically distinct stages,
indicates that both cc-DPB conformers in Fig. 4 serve as tt-DPB
2
nd edn, 2004, pp. 26/1–26/11; (g) G. Krishnamoorthy, S. Schieffer,
J. Pescatore, R. Ulsh, R. S. H. Liu and J. Liu, Photochem. Photobiol.
Sci., 2004, 3, 1047.
5
(a) M. Olivucci, F. Bernardi, P. Celani, I. N. Ragazos and M. A. Robb,
J. Am. Chem. Soc., 1994, 116, 1077; (b) P. Celani, M. Garavelli,
S. Ottani, F. Bernardi, M. A. Robb and M. Olivucci, J. Am. Chem.
Soc., 1995, 117, 11584; (c) M. Garavelli, P. Celani, F. Bernardi,
M. A. Robb and M. Olivucci, J. Am. Chem. Soc., 1997, 119, 11487; (d)
M. Garavelli, B. R. Smith, M. J. Bearpark, F. Bernardi, M. Olivucci
and M. A. Robb, J. Am. Chem. Soc., 2000, 122, 5568.
6 For crossing to the 2 A state see: (a) C. Woywood, W. C. Livingood
and J. H. Frederick, J. Chem. Phys., 2000, 112, 613; (b) C. Woywood,
W. C. Livingood and J. H. Frederick, J. Chem. Phys., 2000, 112, 626; (c)
C. Woywood, W. C. Livingood and J. H. Frederick, J. Chem. Phys.,
24
precursors.
The lower energy conformation with phenyls in perpendicular
planes can, with minimal torsional motion in the diene moiety,
readily form a cis-phenallylbenzyl intermediate on the way to ct-
DPB. Formation of the conventional OBT intermediate requires
little, if any, motion of the phenyl rings since they lie in roughly
orthogonal planes at the outset and can account for one-bond
photoisomerization of cc-DPB in MCH glass. As in the case of
1
g
2001, 114, 1631; (d) C. Woywood, W. C. Livingood and J. H. Frederick,
J. Chem. Phys., 2001, 114, 1645.
1
0
c-NPE, we apply Occam’s razor to favour the OBT over the HT
7
8
For a recent review of polyene photophysics see: W. Fuß, Y. Haas and
S. Zilberg, Chem. Phys., 2000, 259, 273.
A. M. M u¨ ller, S. Lochbrunner, W. E. Schmid and W. Fuss, Angew.
Chem., Int. Ed., 1998, 37, 505.
mechanism in low T rigid media when the two pathways predict
25
the same product.
We can only speculate concerning the difference in behaviour of
the lowest excited singlet states of cc-DPB in IP and MCH glassy
media at 77 K. If thermodynamic equilibrium were maintained
during the cooling process, and if the difference in size and shape
of the cavities occupied by cc-DPB in the two media were not a
factor, then the lower melting IP (113.3 K vs. 146.6 K for MCH)
would have favoured the lower energy conformer with the phenyls
in planes roughly approaching orthogonality. However, thermo-
dynamic equilibration requires slow cooling and we observed the
highest relative yields of two-bond isomerization when the sample
9 (a) J. Saltiel, L. Metts and M. Wrighton, J. Am. Chem. Soc., 1970, 92,
227; (b) J. Saltiel, J. T. D’Agostino, E. D. Megarity, L. Metts,
K. R. Neuberger, M. Wrighton and O. C. Zafiriou, Org. Photochem.,
973, 3, 1.
10 J. Saltiel, T. S. R. Krishna and A. M. Turek, J. Am. Chem. Soc., 2005,
27, 6938.
1 (a) J. Saltiel, N. Tarkalanov and D. F. Sears, Jr., J. Am. Chem. Soc.,
995, 117, 5586; (b) J. Saltiel, G. Krishnamoorthy and D. F. Sears, Jr.,
Photochem. Photobiol. Sci., 2003, 2, 1162.
3
1
1
1
1
12 For a review, see: J. Saltiel and Y.-P. Sun, in Photochromism, Molecules
and Systems, ed. H. D u¨ rr and H. Bouas-Laurent, Elsevier, Amsterdam,
1
990, p. 64.
3 J. H. Pinckard, B. Wille and L. Zechmeister, J. Am. Chem. Soc., 1948,
70, 1938.
tube was plunged into liquid N . It is possible that the shape of the
2
1
solvent cavities in the IP host favours the conformer with phenyls
in parallel planes.
14 L. R. Eastman, Jr., B. M. Zarnegar, J. M. Butler and D. G. Whitten,
J. Am. Chem. Soc., 1974, 96, 2281.
5 W.A.Yee,S.J.HugandD.S.Kliger,J.Am.Chem.Soc.,1988,110,2164.
This work was supported by National Science Foundation
Grant No. CHE-0314784. We thank Dr Olga Dmitrenko for the
DFT calculations.
1
16 L. Yang, R. S. H. Liu, K. L. Boarman, N. L. Wendt and J. Liu, J. Am.
Chem. Soc., 2005, 127, 2404.
1
7 For organic glass viscosities see: (a) H. Greenspan and E. Fischer,
J. Phys. Chem., 1965, 69, 2466; (b) G. A. von Salis and H. Labhart,
J. Phys. Chem., 1968, 72, 752.
Notes and references
1
8 J. Saltiel, D. F. Sears, Jr., J.-O. Choi, Y.-P. Sun and D. W. Eaker,
{ Crystallographic data for cc-DPB: C16H14, M = 206.27, monoclinic,
˚
space group Cc, a = 14.2760(8) A, b = 14.2485(8) A, c = 22.6565(13) A, a =
J. Phys. Chem., 1994, 98, 35.
9 J. Saltiel, A. Marinari, D. W.-L. Chang, J. C. Mitchener and
˚
˚
23
1
3
˚
9
0u, b = 92.136(2)u, c = 90u, V = 4605.4(5) A , rcalcd = 1.190 Mg m and
E. D. Megarity, J. Am. Chem. Soc., 1979, 101, 2982.
0 N. J. Turro, Modern Molecular Photochemistry, Benjamin/Cummings
Publishing Co., Inc., Menlo Park, CA, 1978, p. 90.
Z = 16. With the use of 11375 unique reflections (I > s(I)) collected at
2
˚
1
00(2) K with Mo Ka radiation (l = 0.71073 A) on a Bruker SMART
APEX diffractometer at a detector distance of 5 cm. The number of frames
taken was typically 2400 using 0.3 degree omega scans at 20 s frame
collection time. The first 50 frames were repeated at the end of data
collection and no significant crystal decomposition in the course of the
measurements was detected. Integration was performed using the
programme SAINT which is part of the Bruker suite of programmes.
Absorption corrections were made using SADABS. XPREP was used to
suggest the space groups and the structure was solved by direct methods
2
1 J. Saltiel, A. S. Waller and D. F. Sears, Jr., J. Am. Chem. Soc., 1993,
15, 2453.
2 A Bruker SMART APEX diffractometer was used.
3 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb,
1
2
2
J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, R. E.
Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels,
K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi,
R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford,
J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma,
D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman,
J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu,
A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin,
D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara,
C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen,
M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon,
E. S. Replogle and J. A. Pople, Gaussian 98 (Revision A.7), Gaussian,
Inc., Pittsburgh, PA, 1998.
and refined by SHELXTL. The refinement converged to a final R
.0980, wR = 0.2340 (I > 2s(I)) and GOF = 1.155 with the largest
difference peak and hole as 0.666 and 20.339 e A respectively. CCDC
90241. For problems with the data analysis and crystallographic data in
CIF or other electronic format see DOI: 10.1039/b516319f
1
=
0
2
23
˚
2
1
2
A. Warshel, Nature (London), 1976, 260, 679.
(a) R. S. H. Liu and A. E. Asato, Proc. Natl. Acad. Sci. USA, 1985, 82,
259; (b) R. S. H. Liu, D. Mead and A. Asato, J. Am. Chem. Soc., 1985,
1
07, 6609.
24 J.Saltiel,T.S.R.KrishnaandR.J.Clark,J.Phys.Chem.,2006,110,1694.
25 L. Yang, R. S. H. Liu, N. L. Wendt and J. Liu, J. Am. Chem. Soc.,
2005, 127, 9378.
3
A. M. M u¨ ller, S. Lochbrunner, W. E. Schmid and W. Fuß, Angew.
Chem., Int. Ed., 1998, 37, 505.
1
508 | Chem. Commun., 2006, 1506–1508
This journal is ß The Royal Society of Chemistry 2006