Green Chemistry
Paper
1
(
(
C, 5.5 ppm) of ethane-bridged organosilica units Century Excellent Talents in University of Ministry of Edu-
1
1
2
3
4
–Si– CH – CH –Si–) and carbon species ( C, C and C, 54.3, cation of China (NCET-13-0723).
2 2
1
8.2 and 12.7 ppm) of propylsulfonic acid groups
2
3
4
(
– CH
2 2 2 3 3
CH CH –SO H) are found in the PrSO H-Et-HNS9.0
catalyst used for the fourth time (Fig. 7a). Finally, the hollow
nanospherical morphology of the PrSO H-Et-HNS9.0 catalyst
3
Notes and references
used for the fourth time remains intact (Fig. 7b). The above
results suggest that the physicochemical properties of the
1 J. A. Melero, R. van Grieken and G. Morales, Chem. Rev.,
2006, 106, 3790–3812.
PrSO
3
H-Et-HNS9.0 catalyst used for the fourth time are
2 F. Su and Y. H. Guo, Green Chem., 2014, 16, 2934–2957.
3 G. M. Ziarani, A.-R. Badiei and M. Azizi, Sci. Iran., 2011, 18,
453–457.
4 T. M. Suzuki, T. Nakamura, E. Sudo, Y. Akimoto and
K. Yano, Microporous Mesoporous Mater., 2008, 111, 350–
358.
5 M. H. Tucker, A. J. Crisci, B. N. Wigington, N. Phadke,
R. Alamillo, J. Zhang, S. L. Scott and J. A. Dumesic, ACS
Catal., 2012, 2, 1865–1876.
6 J. A. Bootsma and B. H. Shanks, Appl. Catal., A, 2007, 327,
44–51.
retained, which can ensure its excellent catalytic stability, and
the activity drop after the fourth catalytic cycle is due to the
loss of the catalyst powder. The excellent reusability of as-
prepared organosulfonic acid functionalized organosilica
hollow nanospheres is due to strong chemical interactions
between organosulfonic acid groups and the silica/carbon
framework; meanwhile, the hydrophobic character of alkyl-
containing silica can reduce the acid site deactivation associ-
ated with adsorption of polar byproducts. Therefore, these
hybrid materials work effectively as recyclable solid acid cata-
lysts in the hydrolysis of furfural alcohol to yield ethyl
levulinate.
7 J. A. Melero, L. F. Bautista, G. Morales, J. Iglesias and
D. Briones, Energy Fuels, 2009, 23, 539–547.
8
J. P. Lourenço, M. I. Macedo and A. Fernandes, Catal.
Commun., 2012, 19, 105–109.
9
S. J. Miao and B. H. Shanks, Appl. Catal., A, 2009, 359, 113–
1
4
. Conclusions
20.
A direct co-condensation strategy is applied to prepare a series 10 J. Dhainaut, J. P. Dacquin, A. F. Lee and K. Wilson, Green
of organosulfonic acid functionalized alkyl-bridged organo- Chem., 2010, 12, 296–303.
silica hollow nanosphere hybrid catalysts. By the combination 11 J. J. Woodford, J. P. Dacquin, K. Wilson and A. F. Lee,
of their advantages including strong Brønsted acidity and Energy Environ. Sci., 2012, 5, 6145–6150.
unique hollow nanospherical morphology, as-prepared 12 F. Su, S. An, D. Y. Song, X. H. Zhang, B. Lu and Y. H. Guo,
organic–inorganic hybrid catalysts exhibit excellent hetero- J. Mater. Chem. A, 2014, 2, 14127–14138.
geneous acid catalytic activity in the synthesis of ethyl levuli- 13 Y. Yang, X. Liu, X. B. Li, J. Zhao, S. Y. Bai, J. Liu and
nate from ethanolysis of biomass-derived furfural alcohol. The Q. H. Yang, Angew. Chem., Int. Ed., 2012, 124, 9298–9302.
inherent Brønsted acidity of the hybrid catalysts facilitates the 14 S. Y. Bai, J. Liu, J. S. Gao, Q. H. Yang and C. Li, Microporous
reaction carrying out at a fast rate; additionally, the unique Mesoporous Mater., 2012, 151, 474–480.
hollow nanospherical morphology of the hybrid catalysts with 15 N. Hao, H. T. Wang, P. A. Webley and D. Y. Zhao, Micro-
thin shell thickness and unique textural properties including a porous Mesoporous Mater., 2010, 132, 543–551.
bimodal porous structure with hollow interior and interparti- 16 R. Liu, R. H. Jin, J. Z. An, Q. K. Zhao, T. T. Cheng and
cle voids, large BET surface area and high pore volume can G. H. Liu, Chem. – Asian J., 2014, 9, 1388–1394.
increase the accessibility of the guest molecules to the acid 17 H. C. Xin, J. Zhao, X. B. Li, J. T. Tang and Q. H. Yang, Micro-
sites, reduce the diffusion resistance, shorten the diffusion porous Mesoporous Mater., 2014, 190, 54–62.
pathway, provide better dispersion of the acid sites throughout 18 X. W. Wu and C. M. Crudden, Chem. Mater., 2012, 24,
the hybrid catalysts and increase the population of the acid 3839–3846.
sites, which leads to their much higher acid catalytic activity 19 X. B. Li, Y. Yang and Q. H. Yang, J. Mater. Chem. A, 2013, 1,
than their bulk mesoporous counterparts. More importantly, 1525–1535.
as-prepared hybrid catalysts show excellent reusability under 20 M. Sasidharan, H. Zenibana, M. Nandi, A. Bhaumik and
hydrothermal conditions, and they can be reused after simple K. Nakashima, Dalton Trans., 2013, 42, 13381–13389.
washing with ethanol at room temperature. Therefore, they 21 S. K. Das, M. K. Bhunia, D. Chakraborty, A. R. Khuda-
can be regarded as the promising solid acid catalysts in a
variety of acid-catalyzed reactions.
Bukhsh and A. Bhaumik, Chem. Commun., 2012, 48, 2891–
2893.
2
2
2 G. Pasquale, P. Vázquez, G. Romanelli and G. Baronetti,
Catal. Commun., 2012, 18, 115–120.
3 L. C. Peng, L. Lin, J. H. Zhang, J. B. Shi and S. J. Liu, Appl.
Catal., A, 2011, 397, 259–265.
Acknowledgements
This work was supported by the Natural Science Fund Council 24 G. D. Yadav and I. V. Borkar, Ind. Eng. Chem. Res., 2008, 47,
of China (21173036; 51278092 and 51478095) and New
3358–3363.
This journal is © The Royal Society of Chemistry 2015
Green Chem.