RSC Advances
Paper
0.3%, 0.6% and 0.9%, respectively. The spike and recovery tests 10 R. F. McFeeters and A. O. Barish, J. Agric. Food Chem., 2003,
were carried out in cell lysates. The recovery was between 95– 51, 1513–1517.
104% (Table 1), indicating that this method was well suited for 11 G. Jankovskiene, Z. Daunoravicius and A. Padarauskas, J.
ꢀ
the determination of HSO3 in cell lysates.
Chromatogr. A, 2001, 934, 67–73.
12 Y. Sun, P. Wang, J. Liu, J. Zhang and W. Guo, Analyst, 2012,
137, 3430–3433.
13 H. Xie, F. Zeng, C. Yu and S. Wu, Polym. Chem., 2013, 4,
5416–5424.
4. Conclusions
A ratiometric uorescence assay based on RET between BQDs
and organic dye (DMI) was developed for the detection of sulfur
dioxide derivatives. The proposed method was applied to the
quantication of HSO3ꢀ in HepG2, 7702 and McF-7 cell lysates.
The assay has several signicant advantages. First, this assay is
based on the principle of FRET with BQDs as the energy donor.
It's well known that there is no photobleaching when BQDs is
irradiated by the excitation light, which makes the FRET system
very stable. Secondly, using ratio uorescence analysis to detect
the target eliminates the impacts of environmental changes and
of the instability of the test instrument. Thirdly, this assay has
a good selectivity. Many co-existing anions, reactive oxygen
species, reducing substances and biological mercaptan in the
biological samples have no interference with the detection of
HSO3ꢀ. Considering these advantageous characteristics, we
anticipate the proposed ratiometric uorescence assay will be
very useful for physiological and pathological studies of SO2.
14 X. Yang, M. Zhao and G. Wang, Sens. Actuators, B, 2011, 152,
8–13.
15 Y. Yang, F. Huo, J. Zhang, Z. Xie, J. Chao, C. Yin, D. Liu, S. Jin
and F. Cheng, Sens. Actuators, B, 2012, 166, 665–670.
16 C. Yu, M. Luo, F. Zeng and S. Wu, Anal. Methods, 2012, 4,
2638–2640.
17 M. Choi, J. Hwang, S. Eor and S. Chang, Org. Lett., 2010, 12,
5624–5627.
18 X. Gu, C. Liu, Y. Zhu and Y. J. Zhu, J. Agric. Food Chem., 2011,
59, 11935–11939.
19 X. H. Cheng, H. Z. Jia, J. Feng, J. G. Qin and Z. Li, Sens.
Actuators, B, 2013, 184, 274–280.
20 W. Chen, Q. Fang, D. Yang, H. Zhang, X. Song and J. Foley,
Anal. Chem., 2015, 87, 609–616.
21 S. Chen, P. Hou, J. Wang and X. Song, RSC Adv., 2012, 2,
10869–10873.
22 M. Y. Wu, K. Li, C. Y. Li, J. T. Hou and X. Q. Yu, Chem.
Commun., 2014, 50, 183–185.
Conflicts of interest
23 L. M. Zhu, J. C. Xu, Z. Sun, B. Q. Fu, C. Q. Qin, L. T. Zeng and
X. C. Hu, Chem. Commun., 2015, 51, 1154–1156.
24 H. Yu, L. B. Du, L. M. Guan, K. Zhang, Y. Y. Li, H. J. Zhu,
M. T. Sun and S. H. Wang, Sens. Actuators, B, 2017, 247,
823–829.
25 J. B. Chao, X. L. Wang, Y. M. Liu, Y. B. Zhang, F. J. Huo,
C. X. Yin, M. G. Zhao, J. Y. Sun and M. Xu, Sens. Actuators,
B, 2018, 272, 195–202.
There are no conicts to declare.
Acknowledgements
Financial support from the Natural Science Foundation of
China (No. 201575031 to SZ), the U.S. National Institutes of
Health (GM089557 to YML) and Natural Science Foundation of
Guangxi Province (No. 2017GXNSFFA198014) as well as BAGUI
Scholar Programs is gratefully acknowledged.
26 Y. Q. Zhang, D. K. Ma, Y. Zhuang, X. Zhang, W. Chen,
L. L. Hong, Q. X. Yan, K. Yu and S. M. Huang, J. Mater.
Chem., 2012, 22, 16714–16718.
27 D. P. Li, Z. Y. Wang, X. J. Cao, J. Cui, X. Wang, H. Z. Cui,
J. Y. Miao and B. X. Zhao, Chem. Commun., 2016, 52, 2760–
2763.
References
1 A. V. Leontiev and D. M. Rudkevich, J. Am. Chem. Soc., 2005, 28 Y. Liu, K. Li, K. X. Xie, L. L. Li, K. K. Yu, X. Wang and X. Q. Yu,
127, 14126–14127.
Chem. Commun., 2016, 52, 3430–3433.
2 D. P. Li, Z. Y. Wang, X. J. Cao, J. Cui, X. Wang, H. Z. Cui, 29 Y. Zhang, L. Guan, H. Yu, Y. Yan, L. Du, Y. Liu, M. Sun,
J. Y. Miao and B. X. Zhao, Chem. Commun., 2016, 52, 2760–
2763.
3 Y. Liu, K. Li, K. X. Xie, L. L. Li, K. K. Yu, X. Wang and X. Q. Yu,
Chem. Commun., 2016, 52, 3430–3433.
D. Huang and S. Wang, Anal. Chem., 2016, 88, 4426–4431.
30 M. F. Huang, L. N. Chen, J. Y. Ning, W. L. Wu, X. D. Hec,
J. Y. Miao and B. X. Zhao, Sens. Actuators, B, 2018, 261,
196–202.
4 T. Finkel and N. J. Holbrook, Nature, 2000, 408, 239–247.
5 M. H. Stipanuk and I. Ueki, J. Inherited Metab. Dis., 2011, 34,
17–32.
6 Z. Meng, Z. Yang, J. Li and Q. Zhang, Chemosphere, 2012, 89,
579–584.
31 J. Zhu, F. Qin, D. Zhang, J. Tang, W. Liu, W. Cao and Y. Ye,
New J. Chem., 2019, 43, 16806–16811.
32 S. Sahu, B. Behera, T. K. Maiti and S. Mohapatra, Chem.
Commun., 2012, 48, 8835–8837.
33 J. Wang, C. F. Wang and S. Chen, Angew. Chem., Int. Ed.,
2012, 51, 1–6.
7 G. Li and N. Sang, Ecotoxicol. Environ. Saf., 2009, 72, 236–241.
8 N. Sang, Y. Yun, H. Li, L. Hou, M. Han and G. Li, Toxicol. Sci., 34 J. Zhao, M. Huang, L. Zhang, M. Zou, D. Chen, H. Huang and
2010, 114, 226–236.
S. Zhao, Anal. Chem., 2017, 89, 8044–8049.
9 D. R. Shankaran, N. Uehera and T. Kato, Sens. Actuators, B,
2002, 87, 442–447.
41960 | RSC Adv., 2019, 9, 41955–41961
This journal is © The Royal Society of Chemistry 2019