3138
C. M. G. dos Santos et al. / Tetrahedron Letters 48 (2007) 3135–3139
from [Clꢀ] = 0 ! 0.8 mM is in the form of the ClꢀÆ12
complex. However, the formation of the 1:1 complex be-
gins to dominate after 0.2 mM (green line), eventually
being the most stable species in solution.25,26 With the
aim of demonstrating the selectivity of 1 for Clꢀ, the
luminescence of 1 was recorded in the presence of one
equivalent of AcOꢀ, which quenched the fluorescence.
However, upon addition of increased concentrations of
Clꢀ, the emission was restored, giving rise to a red
shifted emission, as observed in Figure 4. These results
demonstrate that Clꢀ can be sensed selectively by 1,
through (a) the formation of a self-assembly, and (b)
by the fact that only for Clꢀ was the fluorescence of 1
increased, while being queꢀnched by other competitive
7. Ohkuma, S.; Sato, T.; Okamoto, M.; Matsuya, H.; Arai,
K.; Kataoka, T.; Nagai, K.; Wasserman, H. H. Biochem-
istry 1998, 334, 731.
8. Sessler, J. L.; Elleer, L. R.; Cho, W. S.; Nicolaou, S.;
Aguilar, A.; Lee, J. T.; Lynch, V. M.; Magda, D. J. Angew.
Chem., Int. Ed. 2005, 44, 5989.
9. Gale, P. A.; Light, M. E.; McNally, B.; Navakhun, K.;
Sliwinski, K. E.; Smith, B. D. Chem. Commun. 2005, 3773.
10. Gunnlaugsson, T.; Ali, H. D. P.; Glynn, M.; Kruger, P. E.;
Hussey, G. M.; Pfeffer, F. M.; dos Santos, C. M. G.;
Tierney, J. J. Fluoresc. 2005, 15, 287.
11. Leonard, J. P.; dos Santos, C. M. G.; Plush, S. P.;
McCabe, T.; Gunnlaugsson, T. Chem. Commun. 2007,
129; Harte, A. J.; Jensen, P.; Plush, S. E.; Kruger, P. E.;
Gunnlaugsson, T. Inorg. Chem. 2006, 45, 9465; Gunn-
laugsson, T.; Leonard, J. P. Chem. Commun. 2005, 3114;
Gunnlaugsson, T.; Leonard, J. P. J. Fluoresc. 2005, 15,
585; Harte, A. J.; Leonard, J. P.; Nieuwenhuyzen, M.
Supramol. Chem. 2003, 15, 505; Gunnlaugsson, T.; Harte,
A. J.; Leonard, J. P.; Nieuwenhuyzen, M. Chem. Commun.
2002, 2134.
12. Pfeffer, F. M.; Buschgens, A. M.; Barnett, N. W.;
Gunnlaugsson, T.; Kruger, P. E. Tetrahedron Lett. 2005,
46, 6579; Gunnlaugsson, T.; Davis, A. P.; O’Brien, J. E.;
Glynn, M. Org. Biomol. Chem. 2005, 3, 48; Pfeffer, F. M.;
Gunnlaugsson, T.; Jensen, P.; Kruger, P. E. Org. Lett.
2005, 7, 5375; Gunnlaugsson, T.; Davis, A. P.; O’Brien, J.
E.; Glynn, M. Org. Lett. 2002, 4, 2449; Gunnlaugsson, T.;
Davis, A. P.; Hussey, G. M.; Tierney, J.; Glynn, M. Org.
Biomol. Chem. 2004, 2, 1856; Gunnlaugsson, T.; Davis, A.
P.; Glynn, M. Chem. Commun. 2001, 2556.
13. dos Santos, C. M. G.; Glynn, M.; McCabe, T.; Seixas de
Melo, J. S. Burrows, H. D.; Gunnlaugsson, T. Supramol.
Chem., 2007, 19, in press.
14. Quinlan, E.; Matthews, S. E.; Gunnlaugsson, T. Tetrahe-
dron Lett. 2006, 47, 9333; Gunnlaugsson, T.; Kruger, P.
E.; Jensen, P.; Tierney, J.; Ali, H. D. P.; Hussey, G. M. J.
Org. Chem. 2005, 70, 10875.
15. The data were collected on a Bruker Smart Apex
Diffractometer*. The crystal was mounted on a 0.35 mm
quartz fibre and immediately placed on the goniometer
head in a 150 K N2 gas stream. The data were acquired
using Smart Version 5.625 software in multi-run mode and
2400 frames in total, at 0.3° per frame, were collected.
Data integration and reduction was carried out using
Bruker Saint+ Version 6.45 software and corrected for
absorption and polarization effects using Sadabs Version
2.10 software. Space group determination, structure solu-
tion and refinement were obtained using Bruker Shelxtl
Ver. 6.14 software. *SMART Software Reference Manual,
version 5.625, Bruker Analytical X-ray Systems Inc.,
Madison, WI, 2001. Sheldrick, G. M. SHELXTL, An
Integrated System for Data Collection, Processing, Struc-
ture Solution and Refinement, Bruker Analytical X-ray
Systems Inc., Madison, WI, 2001. Crystal data:
ions such as AcOꢀ, H2PO and Fꢀ.
4
In summary, we have developed 1 as a selective fluores-
cence sensor for Clꢀ. While only minor changes were
observed in the absorption spectra of 1 upon anion rec-
ognition, the fluorescence emission spectra were dramat-
ically affected. Nevertheless, only for the sensing of
Clꢀ was the fluorescence of 1 enhanced. For other com-
petitive ions the emission was either quenched or not
modulated. We are currently evaluating the anion bind-
ing of 1 in the presence of both transition and lanthanide
ions.
Acknowledgements
We would like to thank TCD and IRCSET for financial
support, Dr. John E. O’Brien for assisting with NMR
and Dr. Sally E. Plush and Dr. Susan Quinn for their
help. We particularly would like to thank Dr. Joseph
P. Leonard for his assistance at the start of this
investigation.
References and notes
1. Sessler, J. L.; Gale, P. A.; Cho, W. S., Anion Receptor
Chemistry; Royal Society of Chemistry: Cambridge, UK,
2006; Steed, J. W. Chem. Commun. 2006, 2637; Gale, P. A.
´
´
˜
Acc. Chem. Res. 2006, 39, 465; Martınez-Manez, R.;
´
Sancenon, F. Chem. Rev. 2003, 103, 4419; Suksai, C.;
Tuntulani, T. Chem. Soc. Rev. 2003, 32, 192.
2. Wu, F. Y.; Li, Z.; Guo, L.; Wang, X.; Lin, M. H.; Zhao,
Y. F.; Jiang, Y. B. Org. Biomol. Chem. 2006, 4, 624;
Ghosh, K.; Adhikari, S. Tetrahedron Lett. 2006, 47, 8165;
Evans, L. S.; Gale, P. A.; Light, M. E.; Quesada, R. Chem.
Commun. 2006, 965; Pfeffer, F. M.; Seter, M.; Lewcenko,
N.; Barnett, N. W. Tetrahedron Lett. 2006, 47, 5251; Jun,
E. J.; Swamy, K. M. K.; Bang, H.; Kim, S. J.; Yoon, J. Y.
Tetrahedron Lett. 2006, 47, 3103; Liu, B.; Tian, H. Chem.
Lett. 2005, 34, 686; Wel, L. H.; He, Y. B.; Wu, J. L.; Wu,
X. J.; Meng, L.; Yang, X. Supramol. Chem. 2004, 16, 561.
C80H52F12N16O4, Monoclinic, space group P21/c, a =
˚
13.1965(14),
b = 91.320(2)°, U = 1725.4(3) A , T = 150 K,
b = 11.8685(12),
c = 11.0189(11)(17) A,
3
˚
l (Mo-
Ka) = 0.117 mmꢀ1, Z = 4, a total of 13251 reflections
were measured for 4 < 2ꢂ < 57 and 3031 unique reflec-
tions were used in the refinement, [R(int) = 0.0288], the
final parameters were wR2 = 0.1693 and R1 = 0.0648
[I > 2r(I)]. CCDC 637076.
´
3. Gunnlaugsson, T.; Glynn, M.; Tocci (nee Hussey), G. M.;
Kruger, P. E.; Pfeffer, F. M. Coord. Chem. Rev. 2006, 250,
3094.
4. Davis, A. P.; Sheppard, D. N.; Smith, B. D. Chem. Soc.
Rev. 2007, 36, 348.
5. Davis, A. P.; Joos, J. B. Coord. Chem. Rev. 2003, 240, 143;
Boon, J. M.; Smith, B. D. Curr. Opin. Chem. Biol. 2002, 6,
749.
6. McNally, B. A.; Koulov, A. V.; Smith, B. D.; Joos, J.-B.;
Davis, A. P. Chem. Commun. 2005, 1087.
16. We have previously demonstrated the sensing of such
halides using heavy atom affect quenching: Gunnlaugsson,
T.; Bichell, B.; Nolan, C. Tetrahedron 2004, 60, 5799;
Chloride has also been elegantly detected by NMR using
catechols: Smith, D. K. Org. Biomol. Chem. 2003, 1, 3874;
and recently by using accridone fluorescence sensing: